Upregulation of the anti-oxidant system appears to play a role in salt tolerance of rice, with tolerant genotypes also maintaining relatively higher photosynthetic function; during both the vegetative and reproductive stages.
In order to investigate the solutes accumulation associated with salt tolerance of rice (Oryza sativa L.), two rice genotypes including IR651 (salt-tolerant) and IR29 (salt-sensitive) were grown hydroponically in the Youshida nutrient solution. Salinity treatment was imposed 3 weeks after sowing using NaCl in two levels 0 and 100 mmol. Samples were separately collected from the youngest (sixth) leaves, leaf sheaths and roots at 72 and 240 h after salinization; then Na + , K + , Ca 2+ , Mg 2+ , P, Mn 2+ , Cl -and total soluble sugars concentration and Na + /K + ratio were determined. Total dry weight of both genotypes decreased with the application of NaCl. Salinity caused higher accumulation of Na + and Cl -in the sixth leaf and leaf sheath of IR29 than in IR651 while their concentration in root of IR651 was higher. K + concentration was decreased in the sixth leaf and leaf sheath of IR29 under NaCl stress. Reduction in Ca 2+ and Mg 2+ concentrations were observed in sixth leaves of both genotypes. P concentration was increased in leaf sheath and root of IR29 under saline conditions while it showed no changes in IR651. Our results indicated that the tolerant genotype had mechanisms to prevent high Na + and Cl -accumulation in the sixth leaf. High total soluble sugars concentration in shoot of IR651 is probably for adjusting osmotic potential and better water uptake under salinity. These mechanisms help plant to avoid tissue death and enable to continue its growth and development under saline conditions.
Phytohormones, such as auxin and cytokinin, are known to be involved in the regulation of plant responses to salinity stress and counteract the adverse effect of stress conditions. This work investigated the effects of the exogenous spraying of indole-3-acetic acid (IAA) and kinetin (KIN) during the reproductive phase on grain yield by examining the 1000-grain weight and filledgrain percentage as well as the changes in starch, total soluble sugars, sucrose, glucose and fructose concentrations in the grains of two rice cultivars under salt stress. The results indicated that the applied IAA and KIN led to an increased grain yield, 1000-grain weight and filled-grain percentage for both rice cultivars under salt stress. The storage starch content in the grain of the salt-sensitive cultivar was more than that in the salt-tolerant cultivar under IAA application compared with KIN, whereas a decrease in the total soluble sugar content was observed with both IAA and KIN treatments, in comparison to the non-hormone treatment. Interestingly, this study showed that IAA led to a much higher increase in the sucrose content in grain, as compared to the KIN. Furthermore, this experiment suggests that glucose and fructose may play important roles during salt stress because there were clearly higher concentrations of these sugars in the grain of the stressed cultivars under IAA and KIN application: it appears that their accumulation was the earliest response detected during the grain-filling period in rice. Finally, this work indicated that an increase in the rice grain yield, 1000-grain weight and filled-grain percentage are associated with an increase in the contents of starch, sucrose, glucose and fructose in grain caused by the application of IAA and KIN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.