dChemi-mechanical pulping was evaluated as a potential way to prepare sugarcane bagasse fibers for papermaking. Cellulose, lignin, ash, and extractives soluble in alcohol-acetone were measured as 55.75%, 20.5%, 1.85%, and 3.25%, respectively. Fiber length, diameter, lumen cavity, and cell wall thickness were measured as 1.59 mm, 20.96, 9.72, and 5.64 µm. The chemi-mechanical pulping conditions were selected as follows: three charging levels of 10, 15, and 20% sodium sulphite, and three pulping times of 20, 30, and 40 minutes after reaching the pulping temperature. Pulping temperature was held constant at 165 C. Different pulping conditions resulted in pulp yields between 65.38 and 84.28%. The highest yield (84.28%) was obtained using a treatment combination of 20 minutes pulping time and 10% sodium sulphite. The lowest yield (65.38%) was related to 40 minutes pulping time and 20% sodium sulphite. Pulps were refined to 300 ± 25 mL CSF, 60 gm -2 handsheets were made, and then strength indices and optical properties of the handsheets were measured. The results showed that 20% sodium sulphite, 40 minutes pulping time, at 165 ºC can be considered as the optimum pulping conditions for bagasse CMP pulping. Tensile, tear, and burst strength indices, as well as the opacity of this pulp were measured as 39.59 Nmg , and 95.35%, respectively.
In this work, the possibility of using neutral sulfite semi-chemical (NSSC) bagasse pulp mixed with hardwood chemimechanical pulp (CMP) and bleached softwood kraft pulp (BSKP) was investigated with the aim of reducing hardwood and BSKP consumption. The bagasse NSSC pulp had a digester yield of about 73% and was unbleached. It was refined by a PFI mill to 400 mL CSF, but in the case of the hardwood CMP and imported long fiber pulp, the final refined freeness were selected to be 350 and 500 mL CSF. Handsheets were made (60 gm -2 ), and their strength indices and optical properties were measured. Results of this research on a laboratory scale indicated that using bagasse NSSC pulp mixed with hardwood CMP to make newsprint with acceptable quality is possible, and this process will also noticeably reduce the consumption of imported long fiber pulp and wood for producing the grades of paper usually made from CMP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.