Objectives: Contemporary therapies for chronic kidney disease patients encompass a wide range of hemodialysis treatments, most of which rely greatly on dialyzers and hemofilters. The filtration process taking place in these devices with respect to the hemodynamic characteristics of the flow, has not yet been fully investigated. This study aims at improving the understanding of hemodynamics in a dialyzer by employing experimental methods and mathematical models. Methods: A semiempirical model has been formulated based on the principles of hemodynamics, considering the dominant phenomena of filtration-backfiltration and the corresponding driving forces. An in vitro hemodialysis circuit was accordingly assembled for experimental data acquisition, and subsequently for model validation. The circuit consisted of two dialyzers arranged in sequential order, in pursuance of increasing the number of sampling points. Fresh, heparinized porcine blood was used throughout the course of this study. Pressure and flow data obtained from in vitro investigations with the hemodialysis circuit were used as an input for the semiempirical model. Findings: The model predicted a substantial divergence in the course of hematocrit value along the length of the hollow fibers, which is corroborated by the experimental data. Particularly in certain operational conditions, hematocrit rose from 25% at the inlet to 65% halfway along the dialyzers’ length, to end at 30% at the outlet. Conclusion: Validation of the model’s predictions with experimental data demonstrated a very good agreement, confirming the model’s accuracy. Potential implementation of the model in clinical practice in the future might contribute greatly to an improved hemodialysis experience.
The prevalence of oxidative and inflammatory stress in end-stage renal disease (ESRD) patients has often been associated with chronic haemodialysis therapies. Over the past decades, several reports have shown the potential of hydrogen molecule as an antioxidant in the treatment of various medical conditions in animal models, as well as in pilot studies with human patients. Recently, a hydrogen-enriched dialysate solution has been introduced, holding promise in reducing the oxidative and/or inflammatory complications arising during haemodialysis. To this end, a standardised measuring method to determine the levels of hydrogen in dialysate and subsequently in blood is required. This study explores the possibility of quantifying hydrogen concentration using a novel contactless sensor that detects dissolved hydrogen in liquids. An experimental circuit is assembled to validate the sensitivity and accuracy of the hydrogen monitoring system (Pureron Japan Co., Ltd) through in vitro investigations with physiological solutions. Measurements of dissolved molecular hydrogen concentration are corroborated by an established oxygen sensor providing continuous partial pressure readings. The relationship between the applied H2 content in the gaseous mixture and the H2 concentration value at equilibrium is linear. At the same time, the hydrogen monitoring system has a rather long response time, and its readings seem to slightly diverge from sensor to sensor as well as at different temperatures. For this reason, a sensor recalibration might be necessary, which could become part of the product’s ongoing development. Nevertheless, the aforementioned minor deficiencies can be mostly considered negligible in applications such as haemodialysis.
Objectives: Aim of this work was to characterize possible central anatomical configurations in which a future artificial lung (AL) could be connected, in terms of oxygenation performance. Methods: Pulmonary and systemic circulations were simulated using a numerical and an in vitro approach. The in vitro simulation was carried out in a mock loop in three phases: (1) normal lung, (2) pulmonary shunt (50% and 100%), and (3) oxygenator support in three anatomical configurations: right atrium-pulmonary artery (RA-PA), pulmonary artery-left atrium (PA-LA), and aorta-left atrium (Ao-LA). The numerical simulation was performed for the oxygenator support phase. The oxygen saturation (SO2) of the arterial blood was plotted over time for two percentages of pulmonary shunt and three blood flow rates through the oxygenator. Results: During the pulmonary shunt phase, SO2 reached a steady state value (of 68% for a 50% shunt and of nearly 0% for a 100% shunt) 20 min after the shunt was set. During the oxygenator support phase, physiological values of SO2 were reached for RA-PA and PA-LA, in case of a 50% pulmonary shunt. For the same conditions, Ao-LA could reach a maximum SO2 of nearly 60%. Numerical results were congruous to the in vitro simulation ones. Conclusions: Both in vitro and numerical simulations were able to properly characterize oxygenation properties of a future AL depending on its placement. Different anatomical configurations perform differently in terms of oxygenation. Right to right and right to left connections perform better than left to left ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.