A finite set can be supplied with a group structure which can then be used to select (classes of) differential calculi on it via the notions of left-, right-and bicovariance. A corresponding framework has been developed by Woronowicz, more generally for Hopf algebras including quantum groups. A differential calculus is regarded as the most basic structure needed for the introduction of further geometric notions like linear connections and, moreover, for the formulation of field theories and dynamics on finite sets. Associated with each bicovariant first order differential calculus on a finite group is a braid operator which plays an important role for the construction of distinguished geometric structures. For a covariant calculus, there are notions of invariance for linear connections and tensors. All these concepts are explored for finite groups and illustrated with examples. Some results are formulated more generally for arbitrary associative (Hopf) algebras. In particular, the problem of extension of a connection on a bimodule (over an associative algebra) to tensor products is investigated, leading to the class of 'extensible connections'. It is shown that invariance properties of an extensible connection on a bimodule over a Hopf algebra are carried over to the extension. Furthermore, an invariance property of a connection is also shared by a 'dual connection' which exists on the dual bimodule (as defined in this work).
Differential calculus on discrete sets is developed in the spirit of noncommutative geometry. Any differential algebra on a discrete set can be regarded as a 'reduction' of the 'universal differential algebra' and this allows a systematic exploration of differential algebras on a given set. Associated with a differential algebra is a (di)graph where two vertices are connected by at most two (antiparallel) arrows. The interpretation of such a graph as a 'Hasse diagram' determining a (locally finite) topology then establishes contact with recent work by other authors in which discretizations of topological spaces and corresponding field theories were considered which retain their global topological structure. It is shown that field theories, and in particular gauge theories, can be formulated on a discrete set in close analogy with the continuum case. The framework presented generalizes ordinary lattice theory which is recovered from an oriented (hypercubic) lattice graph. It also includes, e.g., the two-point space used by Connes and Lott (and others) in models of elementary particle physics. The formalism suggests that the latter be regarded as an approximation of a manifold and thus opens a way to relate models with an 'internal' discrete space (à la Connes et al.) to models of dimensionally reduced gauge fields. Furthermore, also a 'symmetric lattice' is studied which (in a certain continuum limit) turns out to be related to a 'noncommutative differential calculus' on manifolds.
Abstract. It is shown that higher Bruhat orders admit a decomposition into a higher Tamari order, the corresponding dual Tamari order, and a "mixed order". We describe simplex equations (including the Yang-Baxter equation) as realizations of higher Bruhat orders. Correspondingly, a family of "polygon equations" realizes higher Tamari orders. They generalize the well-known pentagon equation. The structure of simplex and polygon equations is visualized in terms of deformations of maximal chains in posets forming 1-skeletons of polyhedra. The decomposition of higher Bruhat orders induces a reduction of the N -simplex equation to the (N + 1)-gon equation, its dual, and a compatibility equation.
The teleparallelism theory of gravity is presented as a constrained Poincark gauge theory. Arguments are given in favor of a two-parameter family of field Lagrangians quadratic in torsion. The inclusion of a "parity violating" term in the field Lagrangian avoids difficulties with the initial-data problem, recently discussed in the literature. Several new exact solutions of the corresponding teleparallelism theory give considerable insight into its physical consequences. The resulting general field equations are analyzed in the weak-field approximation excluding ghosts and tachyons. The physical meaning of the six additional components of the tetrad field (as compared with the metric) appears naturally from our theory and is made clear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.