Benzaldehyde, a potent aroma chemical of bitter almond, can also be formed thermally from phenylalanine and may contribute to the formation of off-aroma. To identify the precursors involved in its generation during Maillard reaction, various model systems containing phenylalanine, phenylpyruvic acid, phenethylamine, or phenylacetaldehyde were studied in the presence and absence of moisture using oxidative and nonoxidative Py-GC-MS. Analysis of the data indicated that phenylacetaldehyde, the Strecker aldehyde of phenylalanine, is the most effective precursor and that both air and water significantly enhanced the rate of benzaldehyde formation from phenylacetaldehyde. Phenylpyruvic acid was the most efficient precursor under nonoxidative conditions. Phenethylamine, on the other hand, needed the presence of a carbonyl compound to generate benzaldehyde only under oxidative conditions. On the basis of the results obtained, a free radical initiated oxidative cleavage of the carbon-carbon double bond of the enolized phenylacetaldehyde was proposed as a possible major mechanism for benzaldehyde formation, and supporting evidence was provided through monitoring of the evolution of the benzaldehyde band from heated phenylacetaldehyde in the presence and absence of 1,1'-azobis(cyclohexanecarbonitrile) on the ATR crystal of an FTIR spectrophotometer. In the presence of the free radical initiator, the enol band of the phenylacetaldehyde centered at 1684 cm(-1) formed and increased over time, and after 18 min of heating time the benzaldehyde band centered at 1697 cm(-1) formed and increased at the expense of the enol band of phenylacetaldehyde, indicating a precursor product relationship.
Under stress conditions, some microalgae upregulate certain biosynthetic pathways, leading to the accumulation of specific compounds. For example, changing nutrient composition can induce stress in algae's physiological activities, which may trigger an intense increase in carotenoid production. In this study, the change of photosynthetic functions and carotenoid production in the green microalga Scenedesmus sp. was investigated when algal cultures were exposed to conditions including limited nitrogen content with the addition of sodium acetate. Microalgal cultures were treated for 18 days under higher irradiance conditions. We observed a decrease of chlorophyll content induced concomitantly with a decline of photosystem II and I photochemistry. At the same time, an important increase in carotenoid content was detected. By using high-performance liquid chromatographic analysis, we found that the secondary carotenoids astaxanthin and canthaxanthin were accumulated compared to controls. During the process of carotenoid accumulation, chlorophyll degradation was found in addition to a strong decrease in photosynthetic electron transport. Such changes may be associated with the structural reorganization of the photosynthetic apparatus and can be a useful indicator of secondary carotenoid accumulation in algal cultures.
Schiff bases play a critical role, not only in initiating the Maillard reaction, but also in its propagation. Little attention has been paid so far to the ability of these imines to undergo isomerization and thus contribute to the diversity of Maillard reaction products. In this study, imine isomerization through 5-oxazolidinone formation was explored in a phenylalanine/glyceraldehyde model system, and spectroscopic evidence was provided for its formation by taking advantage of the strong carbonyl absorption band centered at 1784 cm(-1). The importance of 5-oxazolidinone formation lies in its ability to decarboxylate to azomethine ylide and subsequently form two isomeric imines, each capable of producing distinct Maillard products. Evidence for the formation of such ylides was also provided through their ability to undergo 1,3-dipolar cycloaddition with dipolarophiles.
Although the importance of alpha-dicarbonyl compounds as reactive intermediates in the Maillard reaction and as precursors of heterocyclic and odor-active compounds is well-established, however, the detailed origin of many alpha-dicarbonyl compounds such as 3,4-hexanedione and 1,2-butanedione still remains unknown. Using glucose and glyoxal with labeled [(13)C-1]alanine, [(13)C-2]alanine, [(13)C-3]alanine, and [(15)N]alanine, the mechanism of their formation was investigated using the label incorporation pattern of the pyrazines derived through the Strecker reaction. Taking into account the non-oxidative mechanism of pyrazine formation, the data indicated that all of the ethyl-substituted pyrazines identified in the glyoxal/alanine model system incorporated C-2' and C-3' atoms of alanine, and not that of free acetaldehyde, as the ethyl group carbon atoms. This was achieved through spiking experiments using unlabeled acetaldehyde in the presence of labeled alanine. Furthermore, the data also indicated the occurrence of a chain elongation process of sugar-derived alpha-dicarbonyl compounds assisted by alanine. On the basis of the proposed mechanism, the glyoxal interaction with alanine through a decarboxylative aldol addition reaction can lead to the formation of 1,2-butanedione with the terminal ethyl carbon atoms originating from C-2' and C-3' atoms of alanine, and the similar interaction of 1,2-butanedione with a second molecule of alanine can lead to the formation of 3,4-hexanedione with both terminal ethyl carbon atoms originating from C-2' and C-3' atoms of alanine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.