The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm−2 using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems.
Rapid population and economic growth in the world have accelerated the search for new sustainable and environment‐friendly energy sources. Power‐producing systems generally add to the carbon load in the environment, contributing to global climate change. In photosynthesis, energy from light splits water molecules into oxygen, protons, and electrons. Algal biophotovoltaic (BPV) platforms were developed to harvest these electrons to generate bioelectricity through algal photosynthesis. Irradiance is one of the most important parameters that determine power output efficiency from algal BPV devices. In this study, the effective range of irradiance levels for power generation from algal BPV devices comprising of suspension and alginate‐immobilized Chlorella cultures on ITO anodes was determined. Immobilized cultures were prepared by entrapping the algal cells in 2% sodium alginate solution. The algal BPV devices were illuminated by four different irradiance levels (30, 90, 150, and 210 µmol photons m−2 s−1). The maximum power density of 0.456 mW m−2 was generated from the prototype algal fuel cell at the irradiance level of 150 µmol photons m−2 s−1. At 210 µmol photons m−2 s−1, low power density was produced due to photoinhibition as indicated by Fv/Fm values generated through PAM fluorometry. In terms of carbon fixation rate, the highest value was recorded in immobilized culture at 217.11 mg CO2 L−1 d−1. The algal biophotovoltaic device is multifunctional and can provide sustainable energy with simultaneous carbon dioxide removal.
The prevalence of photosynthesis, as the major natural solar energy transduction mechanism or biophotovoltaics (BPV), has always intrigued mankind. Over the last decades, we have learned to extract this renewable energy through continuously improving solid-state semiconductive devices, such as the photovoltaic solar cell. Direct utilization of plant-based BPVs has, however, been almost impracticable so far. Nevertheless, the electrochemical platform of fuel cells (FCs) relying on redox potentials of algae suspensions or biofilms on functionalized anode materials has in recent years increasingly been demonstrated to produce clean or carbon-negative electrical power generators. Interestingly, these algal BPVs offer unparalleled advantages, including carbon sequestration, bioremediation and biomass harvesting, while producing electricity. The development of high performance and durable BPVs is dependent on upgraded anode materials with electrochemically dynamic nanostructures. However, the current challenges in the optimization of anode materials remain significant barriers towards the development of commercially viable technology. In this context, two-dimensional (2D) graphene-based carbonaceous material has widely been exploited in such FCs due to its flexible surface functionalization properties. Attempts to economically improve power outputs have, however, been futile owing to molecular scale disorders that limit efficient charge coupling for maximum power generation within the anodic films. Recently, Langmuir–Blodgett (LB) film has been substantiated as an efficacious film-forming technique to tackle the above limitations of algal BPVs; however, the aforesaid technology remains vastly untapped in BPVs. An in-depth electromechanistic view of the fabrication of LB films and their electron transference mechanisms is of huge significance for the scalability of BPVs. However, an inclusive review of LB films applicable to BPVs has yet to be undertaken, prohibiting futuristic applications. Consequently, we report an inclusive description of a contextual outline, functional principles, the LB film-formation mechanism, recent endeavors in developing LB films and acute encounters with prevailing BPV anode materials. Furthermore, the research and scale-up challenges relating to LB film-integrated BPVs are presented along with innovative perceptions of how to improve their practicability in scale-up processes.
A potentially novel actinobacterium isolated from forest soil, Streptomyces sp. KSF103 was evaluated for its insecticidal effect against several mosquito species namely Aedes aegypti, Aedes albopictus, Anopheles cracens and Culex quinquefasciatus. Mosquito larvae and adults were exposed to various concentrations of the ethyl acetate (EA) extract for 24 h. Considerable mortality was evident after the EA extract treatment for all four important vector mosquitoes. Larvicidal activity of the EA extract resulted in LC50 at 0.045 mg/mL and LC90 at 0.080 mg/mL for Ae. aegypti; LC50 at 0.060 mg/mL and LC90 at 0.247 mg/mL for Ae. albopictus; LC50 at 2.141 mg/mL and LC90 at 6.345 mg/mL for An. cracens; and LC50 at 0.272 mg/mL and LC90 at 0.980 mg/mL for Cx. quinquefasciatus. In adulticidal tests, the EA extract was the most toxic to Ae. albopictus adults (LD50 = 2.445 mg/mL; LD90 = 20.004 mg/mL), followed by An. cracens (LD50 = 5.121 mg/mL; LD90 = 147.854 mg/mL) and then Ae. aegypti (LD50 = 28.873 mg/mL; LD90 = 274.823 mg/mL). Additionally, the EA extract exhibited ovicidal activity against Ae. aegypti (LC50 = 0.715 mg/mL; LC90 = 6.956 mg/mL), Ae. albopictus (LC50 = 0.715 mg/mL; LC90 = 6.956 mg/mL), and An. cracens (LC50 = 0.715 mg/mL; LC90 = 6.956 mg/mL), evaluated up to 168 h post-treatment. It displayed no toxicity on the freshwater microalga Chlorella sp. Beijerinck UMACC 313, marine microalga Chlorella sp. Beijerinck UMACC 258 and the ant Odontoponera denticulata. In conclusion, the EA extract showed promising larvicidal, adulticidal and ovicidal activity against Ae. aegypti, Ae. albopictus, An. cracens, and Cx. quinquefasciatus (larvae only). The results suggest that the EA extract of Streptomyces sp. KSF103 has the potential to be used as an environmental-friendly approach in mosquito control. The current study would serve as an initial step toward complementing microbe-based bioinsecticides for synthetic insecticides against medically important mosquitoes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.