In the last years MARIN has been involved in an increasing number of projects for the offshore wind industry. New techniques in model testing and numerical simulations have been developed in this field. In this paper the development of a scaled-down wind turbine operating on a floating offshore platform, similar to the well-known 5MW NREL wind turbine is discussed. To simulate the response of a floating wind turbine correctly it is important that the environmental loads due to wind, waves and current are in line with full scale. For dynamic similarity on model scale, Froude scaling laws are used successfully in the Offshore industry for the underwater loads. To be consistent with the underwater loads, the winds loads have to be scaled according to Froude as well. Previous model tests described by Robertson et al [1] showed that a geometrically-scaled turbine generated a lower thrust and power coefficient with a Froude-scaled wind velocity due to the strong Reynolds scale effects on the flow. To improve future model testing, a new scaling method for the wind turbine blades was developed originally by University of Maine, and here improved and applied. In this methodology, the objective is to obtain power and thrust coefficients which are similar to the full-scale turbine in Froude-scaled wind. This is obtained by changing the geometry of the blades in order to provide thrust equality between model and full scale, and can therefore be considered as a “performance scaling”. This method was then used to design and construct a new MARIN Stock Wind Turbine (MSWT) based on the NREL 5MW wind turbine blade, including an active blade pitch control to simulate different blade pitch control systems. MARIN’s high-quality wind setup in combination with the new model scale stock wind turbine was used for testing the GustoMSC Tri-Floater semi-submersible as presented in Figure 1, including an ECN active blade pitch control algorithm. From the model tests it was concluded that the measured thrust versus wind velocity characteristics of the new MSWT were in line with the full scale prediction and with CFD (Computational Fluid Dynamics) results.
The GustoMSC Tri-Floater is a slender and robust three-column semi-submersible supporting an offshore wind turbine. Model tests were performed for a Tri-Floater equipped with an operational wind turbine and mooring system exposed to wind and waves in the offshore basin at MARIN. A high quality wind setup and special low Reynolds number blades were used, aiming at delivering the Froude scaled thrust. The base scope of experiments was performed with fixed blade pitch angle and generator speed. Some of the experiments were repeated with active blade pitch and generator torque control using a dedicated algorithm developed by ECN. The experiments covered typical operational and survival design conditions. Numerical simulations for the same wave and wind conditions were performed using ANSYS-AQWA coupled with PHATAS. The paper describes the setup and results of both the model tests and the simulations. From the comparison of the numerical and experimental results, it is concluded that coupled aero-hydro-servo-elastic simulations can be used to predict the response of the floating offshore wind turbine to a sufficiently accurate level for design purposes. Furthermore, it is shown that the Tri-Floater motion response is very favorable and that the nacelle accelerations, air gap and mooring loads comply with the design requirements.
When semi-submersibles are floating at shallow draft, only a relatively thin layer of water may be present above the floaters. Model tests and full scale observations have shown that in such cases, even in low waves, non-linear effects significantly influence the wave pattern around the floaters. These non-linear effects make conventional methods based on linear diffraction theory less reliable for the calculation of wave forces and internal loads on a semi-submersible at shallow draft. This paper describes and analyzes the non-linear hydrodynamics affecting the wave loads and internal loads at shallow draft. The feasibility of both ComFLOW and linear diffraction method for the calculation of these loads are assessed. CFD simulations were performed using ComFLOW, a program based on the incompressible Navier-Stokes equations and the improved Volume Of Fluid (iVOF) method. First, the wave loads acting on a fixed semi-submersible in regular waves were calculated with ComFLOW and compared with linear diffraction theory and model tests. Secondly, internal loads were calculated for a moving semi-submersible in regular waves using both ComFLOW and linear diffraction theory. In the ComFLOW simulations, the motions of the semi-submersible were prescribed instead of solved by the method itself. Calculations and comparisons were performed for deep draft and shallow draft conditions. The wave loads on the semi-submersible for shallow draft conditions derived with ComFLOW were reasonably close to the results from model testing, while the results from the linear diffraction method showed significant deviations from the model tests results. The internal loads calculated with ComFLOW were quite close to the results from the linear method, even for shallow draft conditions. Additional model testing is required for validation of the internal loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.