A 3-D continuum mixture model describing the corrosion of concrete with sulfuric acid is built. Essentially, the chemical reaction transforms slaked lime (calcium hydroxide) and sulfuric acid into gypsum releasing water. The model incorporates the evolution of chemical reaction, diffusion of species within the porous material and mechanical deformations. This model is applied to a 1-D problem of a plate-layer between concrete and sewer air. The influx of slaked lime from the concrete and sulfuric acid from the sewer air sustains a gypsum creating chemical reaction (sulfatation or sulfate attack). The combination of the influx of matter and the chemical reaction causes a net growth in the thickness of the gypsum layer on top of the concrete base. The model allows for the determination of the plate layer thickness h = h(t) as function of time, which indicates both the amount of gypsum being created due to concrete corrosion and the amount of slaked lime and sulfuric acid in the material. The existence of a parameter regime for which the model yields a non-decreasing plate layer thickness h(t) is identified numerically. The robustness of the model with respect to changes in the model parameters is also investigated.
Pseudo-parabolic equations have been used to model unsaturated fluid flow in porous media. In this paper it is shown how a pseudo-parabolic equation can be upscaled when using a spatio-temporal decomposition employed in the Peszyńska-Showalter-Yi paper [8]. The spatial-temporal decomposition transforms the pseudo-parabolic equation into a system containing an elliptic partial differential equation and a temporal ordinary differential equation. To strengthen our argument, the pseudo-parabolic equation has been given advection/convection/drift terms. The upscaling is done with the technique of periodic homogenization via two-scale convergence. The well-posedness of the extended pseudo-parabolic equation is shown as well. Moreover, we argue that under certain conditions, a non-local-in-time term arises from the elimination of an unknown.
Living tissues continuously undergo growth, i.e. a change in mass, and remodeling, i.e. reorganization or renovation. Modeling both growth and remodeling (G&R) of the vascular tissue is aimed to provide insight into the adaptation of the tissue, in the healthy and diseased state, and upon surgical intervention. An important aspect is the description of remodeling of collagen fiber direction. Whereas a phenomenological approach for that is suggested in [2], in this study we adopt an approach towards more microstructural approach, along the model in [1].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.