We compile an updated list of 38 measurements of the Hubble parameter H(z) between redshifts 0.07z2.36 and use them to place constraints on model parameters of constant and time-varying dark energy cosmological models, both spatially flat and curved. We use five models to measure the redshift of the cosmological deceleration-acceleration transition, z da , from these H(z) data. Within the error bars, the measured z da are insensitive to the model used, depending only on the value assumed for the Hubble constant H 0 . The weighted mean of our measurements is z da =0.72±0.05 (0.84±0.03) for H 0 =68±2.8 (73.24±1.74) km sand should provide a reasonably model-independent estimate of this cosmological parameter. The H(z) data are consistent with the standard spatially flat ΛCDM cosmological model but do not rule out nonflat models or dynamical dark energy models.
This work reports a synergistic approach to the concentration, detection and kinetic monitoring of pathogens through the integration of nanostructured dielectrophoresis (DEP) with nanotag-labelled Surface Enhanced Raman Spectroscopy (SERS). A nanoelectrode array made of embedded Vertically Aligned Carbon Nanofibers (VACNFs) at the bottom of a microfluidic chip was used to effectively capture and concentrate nanotag-labelled E. coli DHα5 cells into a 200 μm × 200 μm area on which a Raman laser probe was focused. The SERS nanotags were based on iron oxide-gold (IO-Au) core-shell nanoovals (NOVs) of ∼50 nm size, which were coated with a QSY21 Raman reporter and attached to E. coli through specific immunochemistry. The combination of the greatly enhanced Raman signal by the SERS nanotags and the effective DEP concentration significantly improved the detection limit and speed. The SERS signal was measured with both a confocal Raman microscope and a portable Raman probe during DEP capture, and was fully validated with fluorescence microscopy measurements under all DEP conditions. The SERS measurements were sensitive enough to detect a single bacterium. A concentration detection limit as low as 210 cfu ml(-1) using a portable Raman system was obtained with a DEP capture time of only ∼50 s. These results demonstrate the potential to develop a compact portable system for rapid and highly sensitive detection of specific pathogens. This system is reusable, requires minimum sample preparation, and is amenable to field applications.
BackgroundIt is challenging to achieve ultrasensitive and selective detection of waterborne pathogens at extremely low levels (i.e., single cell/mL) using conventional methods. Even with molecular methods such as ELISA or PCR, multi-enrichment steps are needed which are labor and cost intensive. In this study, we incorporated nano-dielectrophoretic microfluidic device with Surface enhanced Raman scattering (SERS) technique to build a novel portable biosensor for easy detection and characterization of Escherichia coli O157:H7 at high sensitivity level (single cell/mL).ResultsA multiplexing dual recognition SERS scheme was developed to achieve one-step target detection without the need to separate target-bound probes from unbound ones. With three different SERS-tagged molecular probes targeting different epitopes of the same pathogen being deployed simultaneously, detection of pathogen targets was achieved at single cell level with sub-species specificity that has not been reported before in single-step pathogen detection.ConclusionThe self-referencing protocol implements with a Nano-dielectrophoretic microfluidic device potentially can become an easy-to-use, field-deployable spectroscopic sensor for onsite detection of pathogenic microorganisms.
We report an electrochemical method for measuring the activity of proteases using nanoelectrode arrays (NEAs) fabricated with vertically aligned carbon nanofibers (VACNFs). The VACNFs of ~150 nm in diameter and 3 to 5 μm in length were grown on conductive substrates and encapsulated in SiO2 matrix. After polishing and plasma etching, controlled VACNF tips are exposed to form an embedded VACNF NEA. Two types of tetrapeptides specific to cancer-mediated proteases legumain and cathepsin B are covalently attached to the exposed VACNF tip, with a ferrocene (Fc) moiety linked at the distal end. The redox signal of Fc can be measured with AC voltammetry (ACV) at ~1 kHz frequency on VACNF NEAs, showing distinct properties from macroscopic glassy carbon electrodes due to VACNF’s unique interior structure. The enhanced ACV properties enable the kinetic measurements of proteolytic cleavage of the surface-attached tetrapeptides by proteases, further validated with a fluorescence assay. The data can be analyzed with a heterogeneous Michaelis-Menten model, giving “specificity constant” kcat/Km as (4.3 ± 0.8) × 104 M−1s−1 for cathepsin B and (1.13 ± 0.38) × 104 M−1s−1 for legumain. This method could be developed as portable multiplex electronic techniques for rapid cancer diagnosis and treatment monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.