Thanks to the many chemical and nutritional components it carries, diet critically affects human health. However, the currently available comprehensive databases on food composition cover only a tiny fraction of the total number of chemicals present in our food, focusing on the nutritional components essential for our health. Indeed, thousands of other molecules, many of which have well documented health implications, remain untracked. To explore the body of knowledge available on food composition, we built FoodMine, an algorithm that uses natural language processing to identify papers from PubMed that potentially report on the chemical composition of garlic and cocoa. After extracting from each paper information on the reported quantities of chemicals, we find that the scientific literature carries extensive information on the detailed chemical components of food that is currently not integrated in databases. Finally, we use unsupervised machine learning to create chemical embeddings, finding that the chemicals identified by FoodMine tend to have direct health relevance, reflecting the scientific community’s focus on health-related chemicals in our food.
Thanks to the many chemical and nutritional components it carries, diet critically affects human health. However, the currently available comprehensive databases on food composition cover only 188 nutritional components that are essential for our health, a tiny fraction of the total number of chemicals present in our food. Indeed, thousands of other molecules, many of which have well documented health implications, remain untracked. To explore the body of knowledge available on food composition, we built FoodMine, an algorithm that uses natural language processing to identify papers from PubMed that potentially report on the chemical composition of garlic and cocoa. After extracting from each paper information on the reported quantities of chemicals, we find that the scientific literature carries extensive information on the detailed chemical components of food that is currently not integrated in databases. Finally, we use unsupervised machine learning to create chemical embeddings, finding that the chemicals identified by FoodMine tend to have direct health relevance, reflecting the scientific community's focus on health-related chemicals in our food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.