Located in the southwestern of the Oume-Fettekro greenstone belt, the Agbahou gold deposit is controlled by structural factors. Geophysics, teledetection and core data suggest the presence of NE and NW faults. However, the NEfaults define two major shear zones (ATZ: Agbahou Tectonic Zone and WTZ: West Tectonic Zone) that control the Agbahou gold mineralization. These first order structures are subparallel to the regional tectonic grain mostly north-east oriented. They seem to respectively develop on the both arms (eastern and western) of an anticline moderately plunging ~25˚ towards northeast. Each shear-zone contains several second-order shear-zones or lenses of variable direction and of 50˚ -80˚ dip. NW-faults however correspond to strike-slip faults and their development should be related to transcurrent tectonics. They acted as control channels on the distribution of gold mineralizations. The ductile-brittle character of shear-zones favored the ascent of hydrothermal fluids and the formation of multiple auriferous quartz veins: veins Type IIa and veins Type IIb relating respectively to the shear-veins and extensional veins. However, Agbahou also shows the existence of a disseminated sulphides-bearing mineralization within host-rocks. At Agbahou, the precipitation of gold probably occurred in a post to late ductile-brittle deformation period.
The northeastern region of Côte d'Ivoire is characterised by a granitic basement mainly composed of biotite granite rocks. According to mapping work in the Gbabédjou and Doropo areas, these Birimian granitoids are cut by gabbro dykes and amphibolite enclaves, which are the subject of this study. In order to better understand the role and the implication of mafic rocks in the Doropo basement emplacement, a multidisciplinary methodology integrating microscopic observations and geochemical analyses of major and trace elements was carried out on 4 samples considered representative of the outcrops studied. Green hornblende, clinopyroxene, and accessory sphene minerals are found in mafic mineral phases, according to petrographic research. Whole-rock analyses reveal that mafic samples with TiO 2 contents < 2% are poor in Ti and have both calc-alkaline and tholeiitic rock affinities. They are metaluminous with A/CNK > 1.1 ratios giving them an orogenic granite nature (I-type). Their REE patterns are moderately fractionated (La/Sm) N = 2.66 -6.13 and (La/Yb) N = 11.17 -43.70) with a very negative Eu anomaly (Eu/Eu* = 0.75 -0.97). The multi-element diagrams are characterized by negative Nb-Ta anomalies and geotectonic studies have identified them as volcanic arc formations. All these characteristics allowed us to distinguish the Doropo mafic rocks as formations originating from the juvenile continental crust, emplaced under the Archean tectonics model with significant crustal contamination in the source. Magma driven by mantle diapir has been injected at the base of the continental crust and the heat induces the partial melting of the overlying How to cite this paper:
This study aims to contribute to improve knowledge on geological formations of Comoé basin. The petrographic study of the geological formations of Koun Fao has highlighted two major lithological families: magmatic rocks consisting of monzonites, monzogranites, diorites, biotite granodiorites, syenites, porphyritic micromonzonites and porphyritic dacite and metamorphic rocks from sedimentary origin (quartz schists, meta-greywackes, schists, andalusite chloritoschist and paragneiss). These formations are affected by amphibolite to greenschist facies metamorphism and hydrothermal alteration (pervasive and vein) marked by the presence of quartz, epidotes, chlorites and sericite. Minerals such as andalusite, muscovite and chlorite characterize a local low pressure contact metamorphism in the andalusite chloritoschist. Remote sensing data (Landsat 8 image) coupled with field data allowed the production of a geological map of the area. The study of the structures and microstructures highlighted two deformation mechanisms. These are flattening and simple shear (ductile and brittle). The study area is affected by four deformation phases: D1 marked by a N-S to NNE-SSW elongation, D2 marked by a NW-SE to NNW-SSE compression phase, D3 which is a NE-SW to NNE-SSW transpression phase and D4, responsible for late structures, marked by a NW-SE to NNW-SSE transpression phase.
The petrographic and structural study of Gbowé (Grand-Béréby) formations located in the SASCA domain (South-West of Côte d'Ivoire) revealed migmatitic paragneisses. For an in-depth understanding of the petrographic, structural and metamorphic characteristics, six (6) thin sections were made from these paragneisses. These gneisses are characterized by paleosomes and neosomes (leucosome and melanosome), consisting of quartz, garnet, plagioclase, biotite, cordierite, sillimanite, myrmekite and microcline. The mineralogical assemblage thus described indicates a retrograde metamorphism (transition from granulitic facies to amphibolitic facies). The structural and microstructural study identified two types of deformation (ductile and brittle). The ductile deformation is characterized by phases D1 (NE-SW flattening) and D2 (NW-SE flattening), materialized by foliations (N140˚, N050˚), folds (asymmetrical folds, similar folds, concentric folds, ptymatic folds) and boudins. Fracture schistosity and fold fracture schistosity are characteristic of the brittle deformation (phase D3). The microstructural study coupled with the metamorphic study shows that the deformations had an impact on the texture of the minerals (recrystallization and mineral reactions). It also allowed giving the paragenesis of phases D1 and D2. The D1 phase is characterized by gar-net1, biotite1, quartz1, sillimanite1 and cordierite1 and the D2 phase is characterized by garnet1, quartz2, sillimanite2, biotite2, garnet2 and orthose2. These parageneses thus highlighted bear witness to a polydeformation and polymorphism that affects the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.