<p>Secondary propulsion methods for high-speed hyperloop transportation are sparsely researched. Secondary propulsion methods are essential to quickly, efficiently, and safely get a hyperloop pod up to its target speed from a stationary state. In this paper, we propose and analyze the feasibility of a form of electromagnetic secondary hyperloop propulsion, called a railgun, commonly used in modern-day artillery technology for high-speed ammunition launching. We assess the feasibility of two different materials and three different geometries for a railgun armature to propel a hyperloop pod. Inverse design of multiphysics simulation of multibody dynamics, magnetic fields, and electric currents are used for material selection of the armature that minimizes rail current energy requirements and the armature geometry that maximizes structural integrity.</p>
Secondary propulsion methods for high-speed hyperloop transportation are sparsely researched. Secondary propulsion methods are essential to quickly, efficiently, and safely get a hyperloop pod up to its target speed from a stationary state. In this paper, we propose and analyze the feasibility of a form of electromagnetic secondary hyperloop propulsion, called a railgun, commonly used in modern-day artillery technology for high-speed ammunition launching. We assess the feasibility of two different materials and three different geometries for a railgun armature to propel a hyperloop pod. Inverse design of multiphysics simulation of multibody dynamics, magnetic fields, and electric currents are used for material selection of the armature that minimizes rail current energy requirements and the armature geometry that maximizes structural integrity.
<p>Secondary propulsion methods for high-speed hyperloop transportation are sparsely researched. Secondary propulsion methods are essential to quickly, efficiently, and safely get a hyperloop pod up to its target speed from a stationary state. In this paper, we propose and analyze the feasibility of a form of electromagnetic secondary hyperloop propulsion, called a railgun, commonly used in modern-day artillery technology for high-speed ammunition launching. We assess the feasibility of two different materials and three different geometries for a railgun armature to propel a hyperloop pod. Inverse design of multiphysics simulation of multibody dynamics, magnetic fields, and electric currents are used for material selection of the armature that minimizes rail current energy requirements and the armature geometry that maximizes structural integrity.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.