Static source code analysis for the detection of vulnerabilities may generate a huge amount of results making it difficult to manually verify all of them. In addition, static code analysis yields a large number of false positives. Consequently, software developers may ignore the results of static code analysis. This paper analyzes the results of static code analysis tools to identify false positive trends per tool. The novel idea is to assist developers and analysts identify the likelihood of a finding to be an actual true positive. This paper proposes an algorithm that makes use of a new critical feature, a personal identifier, which assists labeling the findings correctly as true or false. Experiments verified identification of true positives with a higher level of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.