Neurosecretory control centers form part of the forebrain in many animal phyla, including vertebrates, insects, and annelids. The evolutionary origin of these centers is largely unknown. To identify conserved, and thus phylogenetically ancient, components of neurosecretory brain centers, we characterize and compare neurons that express the prohormone vasotocin (vasopressin/oxytocin)-neurophysin in the developing forebrain of the annelid Platynereis dumerilii and of the zebrafish. These neurons express the same tissue-restricted microRNA, miR-7, and conserved, cell-type-specific combinations of transcription factors (nk2.1, rx, and otp) that specify their identity, as evidenced by the specific requirement of zebrafish rx3 for vasotocin-neurophysin expression. MiR-7 also labels another shared population of neurons containing RFamides. Since the vasotocinergic and RFamidergic neurons appear to be directly sensory in annelid and fish, we propose that cell types with dual sensory-neurosecretory properties were the starting point for the evolution of neurosecretory brain centers in Bilateria.
The spectacular escalation in complexity in early bilaterian evolution correlates with a strong increase in the number of microRNAs1,2. To explore the link between the birth of ancient microRNAs and body plan evolution, we set out to determine the ancient sites of activity of conserved bilaterian microRNA families in a comparative approach. We reason that any specific localization shared between protostomes and deuterostomes (the two major superphyla of bilaterian animals) should probably reflect an ancient specificity of that microRNA in their last common ancestor. Here, we investigate the expression of conserved bilaterian microRNAs in Platynereis dumerilii, a protostome retaining ancestral bilaterian features3,4, in Capitella, another marine annelid, in the sea urchin Strongylocentrotus, a deuterostome, and in sea anemone Nematostella, representing an outgroup to the bilaterians. Our comparative data indicate that the oldest known animal microRNA, miR-100, and the related miR-125 and let-7 were initially active in neurosecretory cells located around the mouth. Other sets of ancient microRNAs were first present in locomotor ciliated cells, specific brain centres, or, more broadly, one of four major organ systems: central nervous system, sensory tissue, musculature and gut. These findings reveal that microRNA evolution and the establishment of tissue identities were closely coupled in bilaterian evolution. Also, they outline a minimum set of cell types and tissues that existed in the protostome–deuterostome ancestor.
Annelids and arthropods share a similar segmented organization of the body whose evolutionary origin remains unclear. The Hedgehog signaling pathway, prominent in arthropod embryonic segment patterning has not been shown to have a similar function outside arthropods. We show that the ligand Hedgehog, the receptor Patched, and the transcription factor Gli are all expressed in striped patterns prior to morphological segment appearance in the annelid Platynereis dumerilii.
Differential expression analysis (DEA) is one of the main instruments utilized for revealing molecular mechanisms in pathological and physiological conditions. DIANA-mirExTra v2.0 (http://www.microrna.gr/mirextrav2) performs a combined DEA of mRNAs and microRNAs (miRNAs) to uncover miRNAs and transcription factors (TFs) playing important regulatory roles between two investigated states. The web server uses as input miRNA/RNA-Seq read count data sets that can be uploaded for analysis. Users can combine their data with 350 small-RNA-Seq and 65 RNA-Seq in-house analyzed libraries which are provided by DIANA-mirExTra v2.0.The web server utilizes miRNA:mRNA, TF:mRNA and TF:miRNA interactions derived from extensive experimental data sets. More than 450 000 miRNA interactions and 2 000 000 TF binding sites from specific or high-throughput techniques have been incorporated, while accurate miRNA TSS annotation is obtained from microTSS experimental/in silico framework. These comprehensive data sets enable users to perform analyses based solely on experimentally supported information and to uncover central regulators within sequencing data: miRNAs controlling mRNAs and TFs regulating mRNA or miRNA expression. The server also supports predicted miRNA:gene interactions from DIANA-microT-CDS for 4 species (human, mouse, nematode and fruit fly). DIANA-mirExTra v2.0 has an intuitive user interface and is freely available to all users without any login requirement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.