The heart rate variability (HRV) of healthy subjects practicing relaxing visualization is studied by use of three multiscale analysis techniques: the detrended fluctuation analysis (DFA), the entropy in natural time (ENT) and the average wavelet (AWC) coefficient. The scaling exponent of normal interbeat interval increments exhibits characteristics of the presence of longrange correlations. During relaxing visualization the HRV dynamics change in the sense that two new features emerge independent of each other: a respiration-induced periodicity that often dominates the HRV at short scales (<40 interbeat intervals) and the decrease of the scaling exponent at longer scales (40-512 interbeat intervals). In certain cases, the scaling exponent during relaxing visualization indicates the breakdown of long-range correlations. These characteristics have been previously seen in the HRV dynamics during non-REM sleep.
The advancement of the solid-state dye laser performance largely depends on the systematic study of the dye-matrix interactions at the nanoscopic scale. The current work deals with blends of a comparatively inert dye host, poly(methyl methacrylate) (PMMA), with nonionic/apolar (substituted perylenes) and ionic/polar (rhodamine 6G, pyrromethene 567) dyes at ≈10−4 mol L−1 loading. Differential scanning calorimetry (DSC) and thermally stimulated currents (TSC) were used to explore the relative strength of inter- and intramolecular guest-host interactions by monitoring blending-induced modifications of the high-temperature signals: the segmental relaxation, the space-charge relaxation, and the liquid-liquid transition. Both techniques revealed the antiplasticizing role of the oligomeric organics on the relaxation dynamics of polymer segments, evidenced by clear glass-transition temperature upshifts. It becomes apparent that this effect is independent of the size, polarity, and ionicity of the dopant, signifying a common mechanism underway. It is suggested that, at least for the dyes under investigation, the chromophores simply fill the voids within the matrix, imposing strong steric hindrances on the rearrangement of the long-range structure. A comparison between the present results and earlier low-temperature dielectric data reveals that the large-scale relaxation dynamics show stronger perturbations due to blending, in comparison to the localized rotational motion of the pendant groups. DSC provided estimates for the unconverted monomer percentages in the solid blends. These were also determined more accurately by nuclear magnetic resonance (NMR), which additionally confirmed that the tacticity of the chains is not affected by the presence of the dye.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.