The popularization of commercial, battery-powered, camera-equipped, Vertical Take-off and Landing (VTOL) Unmanned Aerial Vehicles (UAVs) during the past decade, has significantly affected aerial video capturing operations in varying domains. UAVs are affordable, agile and flexible, having the ability to access otherwise inaccessible spots. However, their limited resources burden computation cinematography techniques on operating with high accuracy and real-time speed on such devices. State-of-the-art object detectors and feature extractors are, thus, studied in this work, aiming to find a trade-off between performance and speed that will allow UAV exploitation for intelligent cinematography purposes. Experimental evaluation on three newly introduced datasets of rowing boats, cyclists and parkour athletes is performed and evidence is provided that even limited-resource autonomous UAVs can indeed be used for cinematography applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.