Strains of mice, through breeding or the disruption of normal genetic pathways, are widely used to model human diseases. Atlases are an invaluable aid in understanding the impact of such manipulations by providing a standard for comparison. We have developed a digital atlas of the adult C57BL/6J mouse brain as a comprehensive framework for storing and accessing the myriad types of information about the mouse brain. Our implementation was constructed using several different imaging techniques: magnetic resonance microscopy, blockface imaging, classical histology and immunohistochemistry. Along with raw and annotated images, it contains database management systems and a set of tools for comparing information from different techniques. The framework allows facile correlation of results from different animals, investigators or laboratories by establishing a canonical representation of the mouse brain and providing the tools for the insertion of independent data into the same space as the atlas. This tool will aid in managing the increasingly complex and voluminous amounts of information about the mammalian brain. It provides a framework that encompasses genetic information in the context of anatomical imaging and holds tremendous promise for producing new insights into the relationship between genotype and phenotype. We describe a suite of tools that enables the independent entry of other types of data, facile retrieval of information and straightforward display of images. Thus, the atlas becomes a framework for managing complex genetic and epigenetic information about the mouse brain. The atlas and associated tools may be accessed at
Over the past decade, the use of informatics to solve complex neuroscientific problems has increased dramatically. Many of these research endeavors involve examining large amounts of imaging, behavioral, genetic, neurobiological, and neuropsychiatric data. Superimposing, processing, visualizing, or interpreting such a complex cohort of datasets frequently becomes a challenge. We developed a new software environment that allows investigators to integrate multimodal imaging data, hierarchical brain ontology systems, on-line genetic and phylogenic databases, and 3D virtual data reconstruction models. The Laboratory of Neuro Imaging visualization environment (LONI Viz) consists of the following components: a sectional viewer for imaging data, an interactive 3D display for surface and volume rendering of imaging data, a brain ontology viewer, and an external database query system. The synchronization of all components according to stereotaxic coordinates, region name, hierarchical ontology, and genetic labels is achieved via a comprehensive BrainMapper functionality, which directly maps between position, structure name, database, and functional connectivity information. This environment is freely available, portable, and extensible, and may prove very useful for neurobiologists, neurogenetisists, brain mappers, and for other clinical, pedagogical, and research endeavors.
The integration of exponential technologies in the traditional manufacturing processes constitutes a noteworthy trend of the past two decades, aiming to reshape the industrial environment. This kind of digital transformation, which is driven by the Industry 4.0 initiative, not only affects the individual manufacturing assets, but the involved human workforce, as well. Since human operators should be placed in the centre of this revolution, they ought to be endowed with new tools and through-engineering solutions that improve their efficiency. In addition, vivid visualization techniques must be utilized, in order to support them during their daily operations in an auxiliary and comprehensive way. Towards this end, we describe a user-centered methodology, which utilizes augmented reality (AR) and computer vision (CV) techniques, supporting low-skilled operators in the maintenance procedures. The described mobile augmented reality maintenance assistant (MARMA) makes use of the handheld’s camera and locates the asset on the shop floor and generates AR maintenance instructions. We evaluate the performance of MARMA in a real use case scenario, using an automotive industrial asset provided by a collaborative manufacturer. During the evaluation procedure, manufacturer experts confirmed its contribution as an application that can effectively support the maintenance engineers.
The rise of the fourth industrial revolution aspires to digitize any traditional manufacturing process, paving the way for new organisation schemes and management principles that affect business models, the environment, and services across the entire value chain. During the last two decades, the generated advancements have been analysed and discussed from a bunch of technological and business perspectives gleaned from a variety of academic journals. With the aim to identify the digital footprint of Industry 4.0 in the current manufacturing ecosystem, a systematic literature survey of surveys is conducted here, based on survey academic articles that cover the current state-of-the-art. The 59 selected high-impact survey manuscripts are analysed using PRISMA principles and categorized according to their technologies under analysis and impact, providing valuable insights for the research and business community. Specifically, the influence Industry 4.0 exerts on traditional business models, small and medium-sized enterprises, decision-making processes, human–machine interaction, and circularity affairs are investigated and brought out, while research gaps, business opportunities, and their relevance to Industry 5.0 principles are pointed out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.