We introduce a predictive modeling solution that provides high quality predictive analytics over aggregation queries in Big Data environments. Our predictive methodology is generally applicable in environments in which large-scale data owners may or may not restrict access to their data and allow only aggregation operators like COUNT to be executed over their data. In this context, our methodology is based on historical queries and their answers to accurately predict ad-hoc queries' answers. We focus on the widely used set-cardinality, i.e., COUNT, aggregation query, as COUNT is a fundamental operator for both internal data system optimizations and for aggregation-oriented data exploration and predictive analytics. We contribute a novel, query-driven Machine Learning (ML) model whose goals are to: (i) learn the query-answer space from past issued queries, (ii) associate the query space with local linear regression & associative function estimators, (iii) define query similarity, and (iv) predict the cardinality of the answer set of unseen incoming queries, referred to the Set Cardinality Prediction (SCP) problem. Our ML model incorporates incremental ML algorithms for ensuring high quality prediction results. The significance of contribution lies in that it (i) is the only query-driven solution applicable over general Big Data environments, which include restrictedaccess data, (ii) offers incremental learning adjusted for Christos Anagnostopoulos christos.anagnostopoulos@glasgow.ac.uk Peter Triantafillou peter.triantafillou@glasgow.ac.uk 1 School of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK arriving ad-hoc queries, which is well suited for querydriven data exploration, and (iii) offers a performance (in terms of scalability, SCP accuracy, processing time, and memory requirements) that is superior to data-centric approaches. We provide a comprehensive performance evaluation of our model evaluating its sensitivity, scalability and efficiency for quality predictive analytics. In addition, we report on the development and incorporation of our ML model in Spark showing its superior performance compared to the Spark's COUNT method.
Analysts wishing to explore multivariate data spaces, typically pose queries involving selection operators, i.e., range or radius queries, which define data subspaces of possible interest and then use aggregation functions, the results of which determine their exploratory analytics interests. However, such aggregate query (AQ) results are simple scalars and as such, convey limited information about the queried subspaces for exploratory analysis. We address this shortcoming aiding analysts to explore and understand data subspaces by contributing a novel explanation mechanism coined XAXA: eXplaining Aggregates for eXploratory Analytics. XAXA's novel AQ explanations are represented using functions obtained by a three-fold joint optimization problem. Explanations assume the form of a set of parametric piecewise-linear functions acquired through a statistical learning model. A key feature of the proposed solution is that model training is performed by only monitoring AQs and their answers on-line. In XAXA, explanations for future AQs can be computed without any database (DB) access and can be used to further explore the queried data subspaces, without issuing any more queries to the DB. We evaluate the explanation accuracy and efficiency of XAXA through theoretically grounded metrics over real-world and synthetic datasets and query workloads.
Large organizations have seamlessly incorporated data-driven decision making in their operations. However, as data volumes increase, expensive big data infrastructures are called to rescue. In this setting, analytics tasks become very costly in terms of query response time, resource consumption, and money in cloud deployments, especially when base data are stored across geographically distributed data centers. Therefore, we introduce an adaptive Machine Learning mechanism which is light-weight, stored client-side, can estimate the answers of a variety of aggregate queries and can avoid the big data backend. The estimations are performed in milliseconds are inexpensive and accurate as the mechanism learns from past analytical-query patterns. However, as analytic queries are ad-hoc and analysts' interests change over time we develop solutions that can swiftly and accurately detect such changes and adapt to new query patterns. The capabilities of our approach are demonstrated using extensive evaluation with real and synthetic datasets.
As more and more organizations rely on data-driven decision making, large-scale analytics become increasingly important. However, an analyst is often stuck waiting for an exact result. As such, organizations turn to Cloud providers that have infrastructure for efficiently analyzing large quantities of data. But, with increasing costs, organizations have to optimize their usage. Having a cheap alternative that provides speed and efficiency will go a long way. Concretely, we offer a solution that can provide approximate answers to aggregate queries, relying on Machine Learning (ML), which is able to work alongside Cloud systems. Our developed lightweight ML-led system can be stored on an analyst's local machine or deployed as a service to instantly answer analytic queries, having low response times and monetary/computational costs and energy footprint. To accomplish this we leverage the knowledge obtained by previously answered queries and build ML models that can estimate the result of new queries in an efficient and inexpensive manner. The capabilities of our system are demonstrated using extensive evaluation with both real and synthetic datasets/workloads and well known benchmarks.
Analysts wishing to explore multivariate data spaces, typically issue queries involving selection operators, i.e., range or equality predicates, which define data subspaces of potential interest. Then, they use aggregation functions, the results of which determine a subspace's interestingness for further exploration and deeper analysis. However, Aggregate Query (AQ) results are scalars and convey limited information and explainability about the queried subspaces for enhanced exploratory analysis. Analysts have no way of identifying how these results are derived or how they change w.r.t query (input) parameter values. We address this shortcoming by aiding analysts to explore and understand data subspaces by contributing a novel explanation mechanism based on Machine Learning. We explain AQ results using functions obtained by a threefold joint optimization problem which assume the form of explainable piecewise-linear regression functions. A key feature of the proposed solution is that the explanation functions are estimated using past executed queries. These queries provide a coarse grained overview of the underlying aggregate function (generating the AQ results) to be learned. Explanations for future, previously unseen AQs can be computed without accessing the underlying data and can be used to further explore the queried data subspaces, without issuing more queries to the backend analytics engine. We evaluate the explanation accuracy and efficiency through theoretically grounded metrics over real-world and synthetic datasets and query workloads. CCS Concepts: • Mathematics of computing → Exploratory data analysis; • Information systems → Data analytics; • Computing methodologies → Supervised learning by regression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.