Purpose To evaluate the associations among mathematical modeling with the use of magnetic resonance (MR) imaging-based texture features and deep myometrial invasion (DMI), lymphovascular space invasion (LVSI), and histologic high-grade endometrial carcinoma. Materials and Methods Institutional review board approval was obtained for this retrospective study. This study included 137 women with endometrial carcinomas measuring greater than 1 cm in maximal diameter who underwent 1.5-T MR imaging before hysterectomy between January 2011 and December 2015. Texture analysis was performed with commercial research software with manual delineation of a region of interest around the tumor on MR images (T2-weighted, diffusion-weighted, and dynamic contrast material-enhanced images and apparent diffusion coefficient maps). Areas under the receiver operating characteristic curve and diagnostic performance of random forest models determined by using a subset of the most relevant texture features were estimated and compared with those of independent and blinded visual assessments by three subspecialty radiologists. Results A total of 180 texture features were extracted and ultimately limited to 11 features for DMI, 12 for LVSI, and 16 for high-grade tumor for random forest modeling. With random forest models, areas under the receiver operating characteristic curve, sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were estimated at 0.84, 79.3%, 82.3%, 81.0%, 76.7%, and 84.4% for DMI; 0.80, 80.9%, 72.5%, 76.6%, 74.3%, and 79.4% for LVSI; and 0.83, 81.0%, 76.8%, 78.1%, 60.7%, and 90.1% for high-grade tumor, respectively. Sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of visual assessment for DMI were 84.5%, 82.3%, 83.2%, 77.7%, and 87.8% (reader 3). Conclusion The mathematical models that incorporated MR imaging-based texture features were associated with the presence of DMI, LVSI, and high-grade tumor and achieved equivalent accuracy to that of subspecialty radiologists for assessment of DMI in endometrial cancers larger than 1 cm. However, these preliminary results must be interpreted with caution until they are validated with an independent data set, because the small sample size relative to the number of features extracted may have resulted in overfitting of the models. RSNA, 2017 Online supplemental material is available for this article.
Purpose To evaluate whether features from texture analysis of breast cancers were associated with pathologic complete response (pCR) after neoadjuvant chemotherapy and to explore the association between texture features and tumor subtypes at pretreatment magnetic resonance (MR) imaging. Materials and Methods Institutional review board approval was obtained. This retrospective study included 85 patients with 85 breast cancers who underwent breast MR imaging before neoadjuvant chemotherapy between April 10, 2008, and March 12, 2015. Two-dimensional texture analysis was performed by using software at T2-weighted MR imaging and contrast material-enhanced T1-weighted MR imaging. Quantitative parameters were compared between patients with pCR and those with non-pCR and between patients with triple-negative breast cancer and those with non-triple-negative cancer. Multiple logistic regression analysis was used to determine independent parameters. Results Eighteen tumors (22%) were triple-negative breast cancers. pCR was achieved in 30 of the 85 tumors (35%). At univariate analysis, mean pixel intensity with spatial scaling factor (SSF) of 2 and 4 on T2-weighted images and kurtosis on contrast-enhanced T1-weighted images showed a significant difference between triple-negative breast cancer and non-triple-negative breast cancer (P = .009, .003, and .001, respectively). Kurtosis (SSF, 2) on T2-weighted images showed a significant difference between pCR and non-pCR (P = .015). At multiple logistic regression, kurtosis on T2-weighted images was independently associated with pCR in non-triple-negative breast cancer (P = .033). A multivariate model incorporating T2-weighted and contrast-enhanced T1-weighted kurtosis showed good performance for the identification of triple-negative breast cancer (area under the receiver operating characteristic curve, 0.834). Conclusion At pretreatment MR imaging, kurtosis appears to be associated with pCR to neoadjuvant chemotherapy in non-triple-negative breast cancer and may be a promising biomarker for the identification of triple-negative breast cancer. RSNA, 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.