Increases in mean annual air temperature (MAAT) and mean annual precipitation (MAP) are projected for north eastern North America, which will alter soil hydroclimatic conditions and hence the rate of many soil processes. Among them, chemical weathering of soil minerals is an essential source of base cations (BC) which controls the acid-base status of surface waters and is crucial for forest nutrition. In this modeling study, MAAT and MAP projections from a regional and a global climate models were first used to project changes in soil temperature (MAST) and soil water content (SWC) with the ForStem and ForHym models for 21 eastern Canadian forested catchments. The models predicted an increase in MAST by 2.03-2.05 • C and 2.87-3.42 • C for the 2041-2070 and 2071-2100 periods, respectively, and a small decrease (<5%) in SWC. In a second step, these projected changes in MAST and SWC were used to estimate changes in BC weathering rates (WR) and soil pH with the geochemical model PROFILE. The simulations indicated that BC WR would increase by 13-15% and 20-22% for the 2041-2070 and 2071-2100 periods, respectively. The increase in BC WR was accompanied by an increase not only in base cation concentrations, but also in soil pH at most sites, suggesting that future temperature increase has the potential to ameliorate the acid-base status and the fertility of soils in eastern Canada through its impact on WR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.