Integrative analysis using omics-based technologies results in the identification of a large number of putative short open reading frames (sORFs) with protein-coding capacity within transcripts previously identified as long noncoding RNAs (lncRNAs) or transcripts of unknown function (TUFs). sORFs were previously overlooked because of their diminutive size and the difficulty of identification by bioinformatics analyses. There is now growing evidence of the existence of potentially functional micropeptides produced from sORFs within cells of diverse species. Recent characterization of a few of these revealed their significant divergent roles in many fundamental biological processes, where some also show important relationships with pathogenesis. Recent works therefore provide new insights for exploring the wealth of information that may lie within sORF-encoded short proteins. Here, we summarize the current progress and view of micropeptides encoded in sORFs of protein-coding genes.
The MALAT1 long noncoding RNA is strongly linked to cancer progression. Here we report a MALAT1 function in repressing the promoter of p53 (TP53) tumor suppressor gene. p21 and FAS, well-known p53 targets, were upregulated by MALAT1 knockdown in A549 human lung adenocarcinoma cells. We found that these upregulations were mediated by transcriptional activation of p53 through MALAT1 depletion. In addition, we identified a minimal MALAT1-responsive region in the P1 promoter of p53 gene. Flow cytometry analysis revealed that MALAT1-depleted cells exhibited G1 cell cycle arrest. These results suggest that MALAT1 affects the expression of p53 target genes through repressing p53 promoter activity, leading to influence the cell cycle progression.
Whole transcriptome analyses have revealed that mammalian genomes are massively transcribed, resulting in the production of huge numbers of transcripts with unknown functions (TUFs). Previous research has categorized most TUFs as noncoding RNAs (ncRNAs) because most previously studied TUFs do not encode open reading frames (ORFs) with biologically significant lengths (>100 amino acids). Recent studies, however, have reported that several transcripts harboring small ORFs (sORFs) that encode peptides shorter than 100 amino acids are translated and play important biological functions. Here, we examined the translational capacity of transcripts annotated as ncRNAs in human cells, and identified several hundreds of ribosome-associated transcripts previously annotated as ncRNAs. Ribosome footprinting and polysome profiling analyses revealed that 61 of them are potentially translatable. Among them, 45 were non-nonsense-mediated mRNA decay targets, suggesting that they are productive mRNAs. We confirmed the translation of one ncRNA, LINC00493, by luciferase reporter assaying and western blotting of a FLAG-tagged LINC00493 peptide. While proteomic analysis revealed that the LINC00493 peptide interacts with many mitochondrial proteins, immunofluorescence assays showed that its peptide is mitochondrially localized. Our findings indicate that some transcripts annotated as ncRNAs encode peptides and that unannotated peptides may perform important roles in cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.