Silver nanoparticles (Ag NPs) were decorated with different amounts on the exterior walls of carbon nanotubes (CNTs) by a laser ablation assisted method, especially in liquid media to be applied as a good adsorption material against naphthalene. The laser ablation time was controlled the amount of decoration Ag NPs on CNTs. The prepared nanocomposite was analyzed via different analytical techniques. Ag NPs with a small size distribution of 29 nm are uniformly decorated with spherical shape on CNTs walls. The disorder degree of tubular structure and shifting of the vibrational characteristic peaks increase with the increase in the decoration of Ag NPs. After that, the prepared samples were investigated for the removal of naphthalene. These studies of loading Ag NPs with different amounts on the surface of CNTs act as a promising material for water treatment.
A new series of laterally fluorinated mesomorphic compounds, namely 2-fluoro-4-((4-(alkyloxy)phenyl)diazenyl)phenyl 4-substitutedbenzoate (Inx) were prepared and evaluated for their mesophase behavior. The synthesized series constitutes five members that possess different terminally attached polar groups (X). Their molecular structures were confirmed by elemental analyses and both FT-IR and NMR spectroscopy. Examination of the prepared derivatives was conducted via experimental and theoretical tools. Mesomorphic investigations were carried by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). DSC and POM measurements indicated that except for the un-substituted analogue, all other derivatives were purely nematogenic, possessing their nematic (N) mesophase enantiotropically. This is to say that insertions of terminal polar substituents on their mesogenic structures induced the N phase. In addition, the location of lateral and terminal polar moieties played a considerable role in achieving good thermal N stability. Computational calculations were investigated to determine the deduced optimized molecular structures. Theoretical data indicated that both size and polarity of the terminal substituent (X) have essential impact on the thermal parameters and optical properties of possible geometries.
The physical and chemical properties of three new liquid crystalline derivatives, based on an azomethine core with low-temperature mesophase—namely (4-methoxybenzylideneamino) phenyl palmitate (I), (4-methoxybenzylideneamino) phenyl oleate (II), and (4-methoxybenzylideneamino) phenyl linoleate (III)—were prepared and physically examined using experimental methodologies. Elemental analysis, FT-IR, and NMR spectroscopy were used to confirm their molecular structure. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) were used to investigate their mesomorphic activity. The results revealed that compound (I) is monotropic smectogenic, possessing the smectic A mesophase, whereas the other two analogues were shown to possess the SmA phase enantiotropically. Two of the saturated and unsaturated prepared derivatives (namely I and II) were used to construct their phase diagram. The eutectic composition of the mixture examined showed a slight enhancement of the stability of the smectic A phase. Polymorphic phases were produced at the eutectic composition of the binary phase diagram of the derivative II with the 4-n-dodecyloxy benzoic acid component.
The thermal stability and mesomorphic behavior of a new biphenyl azomethine liquid crystal homologues series, (E)-4-(([1,1’-biphenyl]-4-ylmethylene)amino)phenyl 4-(alkoxy)benzoate, In, were investigated. The chemical structures of the synthesized compounds were characterized using FT-IR, NMR, and elemental analyses. Differential scanning calorimetry (DSC) and polarized optical microscopy were employed to evaluate the mesomorphic characteristics of the designed homologues. The examined homologues possessed high thermal stability and broad nematogenic temperature ranges. Furthermore, the homologues were covered by enantiotropic nematic phases. The experimental measurements of the mesomorphic behavior were substantiated by computational studies using the density functional theory (DFT) approach. The reactivity parameters, dipole moments, and polarizability of the studied molecules are discussed. The theoretical calculations demonstrated that as the chain length increased, the polarizability of the studied series increased; while it did not significantly affect the HOMO–LUMO energy gap and other reactivity descriptors, the biphenyl moiety had an essential impact on the stability of the possible geometries and their thermal as well as physical parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.