Background: Oxytocin is a stress-attenuating and pro-social neuropeptide. To date, no study has looked at the effects of oxytocin in modulating brain activity in depressed individuals nor attempted to correlate this activity with attribution of mental activity in others. Method: We enrolled 10 unmedicated depressed adults and 10 matched healthy controls in a crossover, double blind placebo controlled fMRI 40 i.u. intra-nasal oxytocin study (20 i.u. per nostril). Each subject performed reading the mind in the eyes task (RMET) before and after inhalation of oxytocin or placebo control for a total of 80 scans. Results: Before oxytocin administration, RMET engaged the medial and lateral prefrontal cortex, amygdala, insula and associative areas. Depressed subjects showed increased anterior ventral activation for the RMET minus gender identification contrast whereas matched controls showed increased dorsal and frontal activity. Compared to placebo, oxytocin in depressed subjects showed increased activity in the superior middle frontal gyrus and insula, while controls exhibited more activity in ventral regions. Oxytocin also led to inverse effects in reaction times on attribution task between groups, with controls getting faster and depressed individuals slower to respond. Conclusion: Depression is associated with increased paralimbic activity during emotional mental attribution of others, appearing to be distinctly modulated by oxytocin when compared to healthy controls. Further studies are needed to explore long-term exposure to pro-social neuropeptides on mood in depressed populations and assess their clinical relevance.
OBJECTIVEPain relief following microvascular decompression (MVD) for trigeminal neuralgia (TN) may be related to pain type, degree of neurovascular conflict, arterial compression, and location of compression. The objective of this study was to construct a predictive pain-free scoring system based on clinical and radiographic factors that can be used to preoperatively prognosticate long-term outcomes for TN patients following surgical intervention (MVD or internal neurolysis [IN]). It was hypothesized that contributing factors would include pain type, presence of an artery or vein, neurovascular conflict severity, and compression location (root entry zone).METHODSAt the authors’ institution 275 patients with type 1 or type 2 TN (TN1 or TN2) underwent MVD or IN following preoperative high-resolution brain MRI studies. Outcome data were obtained retrospectively by chart review and/or phone follow-up. Characteristics of neurovascular conflict were obtained from preoperative MRI studies. Factors that resulted in a probability value of < 0.05 on univariate logistic regression analyses were entered into a multivariate Cox regression analysis in a backward stepwise fashion. For the multivariate analysis, significance at the 0.15 level was used. A prognostic system was then devised with 4 possible scores (0, 1, 2, or 3) and pain-free survival analyses conducted.RESULTSUnivariate predictors of pain-free survival were pain type (p = 0.013), presence of any vessel (p = 0.042), and neurovascular compression severity (p = 0.038). Scores of 0, 1, 2, and 3 were found to be significantly different in regard to pain-free survival (log rank, p = 0.005). At 5 and 10 years there were 36%, 43%, 61%, and 69%, and 36%, 43%, 56%, and 67% pain-free survival rates in groups 0, 1, 2, and 3, respectively. While TN2 patients had worse outcomes regardless of score, a subgroup analysis of TN1 patients with higher neurovascular conflict (score of 3) had significantly better outcomes than TN1 patients without severe neurovascular conflict (score of 1) (log rank, p = 0.005). Regardless of pain type, those patients with severe neurovascular conflict were more likely to have arterial compression (99%) compared to those with low neurovascular conflict (p < 0.001).CONCLUSIONSPain-free survival was predicted by a scoring system based on preoperative clinical and radiographic findings. Higher scores predicted significantly better pain relief than lower scores. TN1 patients with severe neurovascular conflict had the best long-term pain-free outcome.
There is a persistent risk of DBS infection and erosion beyond the first year of DBS implantation. Start of the academic year was associated with increased infection rate at our institution.
OBJECTIVEThe pathophysiology of trigeminal neuralgia (TN) in patients without neurovascular compression (NVC) is not completely understood. The objective of this retrospective study was to evaluate the hypothesis that TN patients without NVC differ from TN patient with NVC with respect to brain anatomy and demographic characteristics.METHODSSix anatomical brain measurements from high-resolution brain MR images were tabulated; anterior-posterior (AP) prepontine cistern length, cerebellopontine angle (CPA) cistern volume, nerve-to-nerve distance, symptomatic nerve length, pons volume, and posterior fossa volume were assessed on OsiriX. Brain MRI anatomical measurements from 232 patients with either TN type 1 or TN type 2 (TN group) were compared with measurements obtained in 100 age- and sex-matched healthy controls (control group). Two-way ANOVA tests were conducted on the 6 measurements relative to group and NVC status. Bonferroni adjustments were used to correct for multiple comparisons. A nonhierarchical k-means cluster analysis was performed on the TN group using age and posterior fossa volume as independent variables.RESULTSWithin the TN group, females were found to be younger than males and less likely to have NVC. The odds ratio (OR) of females not having NVC compared to males was 2.7 (95% CI 1.3–5.5, p = 0.017). Patients younger than 30 years were much less likely to have NVC compared to older patients (OR 4.9, 95% CI 1.3–18.4, p = 0.017). The mean AP prepontine cistern length and symptomatic nerve length were smaller in the TN group than in the control group (5.3 vs 6.5 mm and 8.7 vs 9.7 mm, respectively; p < 0.001). The posterior fossa volume was significantly smaller in TN patients without NVC compared to those with NVC. A TN group cluster analysis suggested a sex-dependent difference that was not observed in those without NVC. Factorial ANOVA and post hoc testing found that findings in males without NVC were significantly different from those in controls or male TN patients with NVC and similar to those in females (female controls as well as female TN patients with or without NVC).CONCLUSIONSPosterior fossa volume in males was larger than posterior fossa volume in females. This finding, along with the higher incidence of TN in females, suggests that smaller posterior fossa volume might be an independent factor in the pathophysiology of TN, which warrants further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.