The 'molten' globular conformation of a protein is compact with a native secondary structure but a poorly defined tertiary structure. Molten globular states are intermediates in protein folding and unfolding and they may be involved in the translocation or insertion of proteins into membranes. Here we investigate the membrane insertion of the pore-forming domain of colicin A, a bacteriocin that depolarizes the cytoplasmic membrane of sensitive cells. We find that this pore-forming domain, the insertion of which depends on pH, undergoes a native to molten globule transition at acidic pH. The variation of the kinetic constant of membrane insertion of the protein into negatively charged lipid vesicles as a function of the interfacial pH correlates with the appearance of the acidic molten globular state, indicating that this state could be an intermediate formed during the insertion of colicin A into membranes.
Colicins are antibiotic proteins produced by and active against sensitive Escherichia coli and closely related bacteria. They can adsorb to specific receptors located at the external surface of the outer membrane of sensitive cells, and are then translocated to their specific targets within these cells. The largest group of colicins comprises those which can form voltage-dependent channels in membranes, thereby destroying the cell's energy potential. Colicin molecules are organized in structural domains, each domain carrying one function associated with the toxin's lethal activity. The pore-forming activity seems to be located at the carboxyl terminus. A thermolytic fragment comprising amino acids 389-592 from colicin A has pore-forming properties very similar to those of the entire molecule. This fragment is soluble in aqueous medium and spontaneously inserts into lipid bilayers. We have determined the structure of the pore-forming fragment of colicin A by X-ray crystallography and refinement at 2.5 A resolution. The protein consists of ten alpha-helices organized in a three-layer structure. Two of the helices are completely buried within the structure and form a hydrophobic hairpin loop similar to that proposed for signal sequences which function in translocation. We present a model for insertion of the protein into lipid bilayers the features of which may be applicable in other biological systems involving protein insertion or translocation across membranes.
SummaryUnder iron limitation, Pseudomonas aeruginosa secretes a fluorescent siderophore called pyoverdin, which, after complexing iron, is transported back into the cell via its outer membrane receptor FpvA. Previous studies demonstrated co-purification of FpvA with iron-free PaA and reported similar binding affinities of iron-free pyoverdin and ferric-pyoverdin to purified FpvA. The fluorescence resonance energy transfer between iron-free PaA and the FpvA receptor here reveals the existence of an FpvA±pyoverdin complex in P. aeruginosa in vivo, suggesting that the pyoverdin-loaded FpvA is the normal state of the receptor in the absence of iron. Using tritiated ferricpyoverdin, it is shown that iron-free PaA binds to the outer membrane but is not taken up into the cell, and that in vitro and, presumably, in vivo ferric-pyoverdin displaces the bound iron-free pyoverdin on FpvA± PaA to form FpvA±PaA-Fe complexes. In vivo, the kinetics of formation of this FpvA±PaA-Fe complex are more than two orders of magnitude faster than in vitro and depend on the presence of TonB. In P. aeruginosa, two tonB genes have been identified (tonB1 and tonB2). TonB1 is directly involved in ferric-pyoverdin uptake, and TonB2 seems to be able partially to replace TonB1 in its role in iron acquisition. However, no effect of TonB1 or TonB2 on the apparent affinity of free pyoverdin to FpvA was observed, and a 17-fold difference was measured between the affinities of the two forms of pyoverdin (PaA and PaA-Fe) to FpvA in the absence of TonB1 or TonB2. The mechanism of iron uptake in P. aeruginosa via the pyoverdin pathway is discussed in view of these new findings.
The porins of Gram-negative bacteria are responsible for the 'molecular sieve' properties of the outer membrane. They form large water-filled channels which allow the diffusion of hydrophilic molecules into the periplasmic space. Owing to the strong hydrophilicity of their amino acid sequence and the nature of their secondary structure (beta strands), conventional hydropathy methods for predicting membrane topology are useless for this class of protein. The large number of available porin amino acid sequences was exploited to improve the accuracy of the prediction in combination with tools detecting amphipathicity of secondary structure. Using the constraints of beta-sheet structure these porins are predicted to contain 16 membrane-spanning strands, 14 of which are common to the two (enteric and the neisserial) porin subfamilies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.