The recently discovered human polyomavirus (MCPyV) is frequently found in Merkel cell carcinoma (MCC) tissue and is believed to be causally linked to MCC pathogenesis. While cell lines established from MCC represent a valuable tool to study the contribution of MCPyV to MCC pathogenesis, hitherto only 1 MCPyV‐positive line has been described. We have analyzed 7 MCC cell lines for the presence, integration pattern and copy number of MCPyV. In 5 cell lines, MCPyV specific sequences were detected. In 3 of these lines, multiple copies of viral genomes per cell were detected, and sequencing of PCR amplificates identified distinct mutations predicted to lead to the expression of a truncated large T‐Antigen (LT‐Ag). In 1 cell line, clonal integration of concatamerized viral genomes was confirmed by Southern Blotting. MCC cell lines are conventionally categorized as “classic” or “variant” and further divided into 4 subtypes, based on expression of neuroendocrine markers and morphology. While it has been suggested that the presence of MCPyV might promote a classic phenotype, such a notion is not supported by our data. Instead, we find MCPyV‐positive as well as ‐negative lines of the classic variety, indicating that the distinguishing features are either inherently independent of viral infection or have become so in the course of tumorigenesis and/or cell line establishment. We therefore suggest a novel classification scheme based on MCPyV presence, integration patterns and T‐Ag mutations. The cell lines described here extend the repertoire of available MCPyV‐positive MCC‐lines and should aid in the elucidation of the role of MCPyV in the pathogenesis of MCC.
Merkel cells (MCs) are neuroendocrine cells of unknown origin located in the skin. They are identified at electron microscopic level by electron dense granules, at light microscopic level by the presence of cytokeratins 8, 18, 19 and 20. Contradictory reports concerning the presence of other molecules of epithelial as well as neural origin prompted us to investigate whether there are distinct populations of human MCs. Here, we show the heterogeneous expression of villin, N-CAM, NGF-R, and neurofilaments in MCs. Synaptophysin is found in all MCs but with different intensity, nestin is absent. Expression patterns vary between interfollicular epidermis, hair follicles and glabrous epidermis. We conclude that there are distinct populations of MCs, but all populations contain markers for epithelial as well as neural cells. Putative functions of the distinct populations are discussed.
Assuming that MCCs originate from Merkel cells, our data indicate a switch from E- and P-cadherin to N-cadherin during tumorigenesis. Whether the unexpected heterogeneity of junctional proteins can be exploited for prognostic and therapeutic purposes will need to be examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.