Nowadays, there has been immense progress in developing materials to support transplanted cells. Nevertheless, the complexity of tissues is far beyond what is found in the most advanced scaffolds. This article reviews the types of biomaterials and their resulting scaffolds in the bio-engineering of bone and tissues by presenting an overview of the characteristics of ideal scaffold in tissue engineering along with types of scaffolds and examples of previous studies where these scaffolds have been applied. The advantages of scaffolds, and the three-dimensional culture system and its used commercially available scaffold is presented. Challenges encountered in the application of these scaffolds in bone and tissue engineering is also highlighted. Used method was by acquisition of materials through Google scholar, Science direct, PubMed and University library archives. Proper knowledge of the above highlighted facts will go a long way in re-addressing the production of scaffolds for bone and tissue engineering. With the proliferation of innovative applications in bioactive glasses and glass ceramics, the greater need for specific understanding of cell biology with emphasis on cellular differentiation, cell to cell interaction and extracellular matrix formation in engineering of bone and tissues becomes inevitable. This will enhance scaffold production, bone regeneration and transplantation outcome.
In response to the recent alarming prevalence of cancer, osteoarthritis and other inflammatory disorders, the study of anti-inflammatory and anticancer crude medicinal plant extracts has gained considerable attention. Eucomis autumnalis is a native flora of South Africa with medicinal value. It has been found to have anti-inflammatory, anti-bacterial, anti-tumor/cancer, anti-oxidative and antihistaminic characteristics and produces bulb that have therapeutic value in South African traditional medicine. Despite the widely acclaimed therapeutic values of Eucomis autumnalis, its proper identification and proper knowledge, morphogenetic factors are yet to be efficiently evaluated. Similar to other plants with the same characteristics, E. autumnalis extract may stimulate bone formation and cartilage regeneration by virtue of its anti-inflammatory properties. This review provides data presented in the literature and tries to evaluate the three subspecies of E. autumnalis, highlighting their geographical location in South African provinces, their toxicity effects, as well as their phytochemistry and anti-inflammatory properties. Biologically active components, pharmacological importance and some environmental factors that can affect E. autumnalis are presented. The review also discussed the novel potential roles of E. autumnalis in regenerative medicine. Proper knowledge of the E. autumnalis plant and its possible role in bone and cartilage regeneration will help in addressing and clarifying its use in the production of drugs and for other therapeutic purposes, especially in the treatment of inflammatory diseases and cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.