Histone acetyltransferases (HATs) assemble into multisubunit complexes in order to target distinct lysine residues on nucleosomal histones. Here, we characterize native HAT complexes assembled by the BRPF family of scaffold proteins. Their plant homeodomain (PHD)-Zn knuckle-PHD domain is essential for binding chromatin and is restricted to unmethylated H3K4, a specificity that is reversed by the associated ING subunit. Native BRPF1 complexes can contain either MOZ/MORF or HBO1 as catalytic acetyltransferase subunit. Interestingly, while the previously reported HBO1 complexes containing JADE scaffold proteins target histone H4, the HBO1-BRPF1 complex acetylates only H3 in chromatin. We mapped a small region to the N terminus of scaffold proteins responsible for histone tail selection on chromatin. Thus, alternate choice of subunits associated with HBO1 can switch its specificity between H4 and H3 tails. These results uncover a crucial new role for associated proteins within HAT complexes, previously thought to be intrinsic to the catalytic subunit.
Background: The development of phenotypic biomarkers to aid the selection of treatment for patients with castrate-resistant prostate cancer (CRPC) is an important priority. Plasma exosomes have excellent potential as real-time biomarkers to characterize the tumor because they are easily accessible in the blood and contain DNA, RNA, and protein from the parent cell. This study aims to investigate the characteristics of putative prostate-specific plasma extracellular vesicle (EV) markers and their relationship with clinical outcomes. Methods and Patients:We investigated plasma EVs in a total of 89 patients with prostate cancer (PCa) at different stages of disease progression. EVs were isolated using both precipitation and ultracentrifugation methods; physical characterization was performed using dynamic light scattering, acetylcholinesterase (AChE) activity, and velocity gradients. An immunocapture method was developed for the evaluation of prostate-specific membrane antigen (PSMA)-positive exosomes. Exosomal messenger RNA (mRNA) was quantified using droplet digital polymerase chain reaction for the expression of KLK3 and androgen receptor splice variant 7 (AR-V7) genes, which code prostate-specific antigen (PSA) and AR-V7, respectively. Serum sex steroids were measured using liquid chromatography-tandem mass spectroscopy.Results: Isolated exosomes from patients with CRPC had a smaller hydrodynamic size than those isolated from localized patients with PCa, while AChE activity showed no difference. Moreover, no differences were observed after initiation of androgen deprivation therapy in serial patient samples. Velocity gradients identified that PSMA-positive exosomes occupied a specific fraction of isolated EVs. A total of 35 patients with CRPC had mRNA analyzed from isolated plasma exosomes. Detectable exosomal KLK3 corresponded with higher concomitant serum PSA measurements, as expected (mean, 112.6 vs 26.61 ng/mL; P = .065). Furthermore, detectable levels of AR-V7 mRNA were associated with a shorter time to progression (median, 16.0 vs 28.0 months; P = .0499). Furthermore, detectable exosomal AR-V7 was significantly associated with testosterone levels below the lower limit of quantification (<0.1 nM). Conclusions:Our results suggest that exosomal AR-V7 is correlated with lower sex steroid levels in CRPC patients with a poorer prognosis. PSMA immunocapture does not appear sufficient to isolate PCa-specific exosomes. K E Y W O R D Sandrogen receptor splice variant, circulating biomarkers, extracellular vesicles, prostate-specific membrane antigen, sex steroids
is essential for development of several organs and tissues. In the respiratory system, loss of function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these expression domains using a conditional gene targeting approach. does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.