A trifluoromethyl ketone analogue of arachidonic acid in which the COOH group is replaced with COCF3 (AACOCF3) was prepared and found to be a tight- and slow-binding inhibitor of the 85-kDa cytosolic human phospholipase A2 (cPLA2). Enzyme inhibition was observed when AACOCF3 was tested in assays using either phospholipid vesicles or phospholipid/Triton X-100 mixed micelles. The fact that the inhibition developed over several minutes in both assays establishes that AACOCF3 inhibits by direct binding to the enzyme rather than by decreasing the fraction of enzyme bound to the substrate interface. From the measured values of the inhibitor association and dissociation rate constants, an upper limit of the equilibrium dissociation constant for the Ca(2+).AACOCF3.PLA2 complex of 5 x 10(-5) mole fraction was obtained. Thus, detectable inhibition of cPLA2 by AACOCF3 occurs when this compound is present in the assay at a level of one inhibitor per several thousand substrates. Arachidonic acid analogues in which the COOH group is replaced by COCH3, CH(OH)CF3, CHO, or CONH2 did not detectably inhibit the cPLA2. The arachidonyl ketones AACOCF2CF3 and AACOCF2Cl were found by 19F NMR to be less hydrated than AACOCF3 in phospholipid/Triton X-100 mixed micelles, and compared to AACOCF3 these compounds are also weaker inhibitors of cPLA2. In keeping with the fact that cPLA2 displays substrate specificity for arachidonyl-containing phospholipids, the arachidic acid analogue C19H39COCF3 is a considerably less potent inhibitor compared to AACOCF3.(ABSTRACT TRUNCATED AT 250 WORDS)
A combination of pharmacological and genetic approaches was used to determine the role of type 4 cAMP-specific cyclic nucleotide phosphodiesterase 4 (PDE4) in reversing alpha(2)-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis in non-vomiting species. Among the family-specific PDE inhibitors, PDE4 inhibitors reduced the duration of xylazine/ketamine-induced anesthesia in mice, with no effect on pentobarbital-induced anesthesia. The rank order of the PDE4 inhibitors tested was 6-(4-pyridylmethyl)-8-(3-nitrophenyl)quinoline (PMNPQ) > (R)-rolipram > (S)-rolipram >> (R)-N-[4-[1-(3-cyclopentyloxy-4-methoxyphenyl)-2-(4-pyridyl)ethyl]phenyl]N'-ethylurea (CT-2450). The specific roles of PDE4B and PDE4D in this model were studied using mice deficient in either subtype. PDE4D-deficient mice, but not PDE4B-deficient mice, had a shorter sleeping time than their wild-type littermates under xylazine/ketamine-induced anesthesia, but not under that induced with pentobarbital. Concomitantly, rolipram-sensitive PDE activity in the brain stem was decreased only in PDE4D-deficient mice compared with their wild-type littermates. While PMNPQ significantly reduced the xylazine/ketamine-induced anesthesia period in wild-type mice and in PDE4B-null mice, it had no effect in PDE4D-deficient mice. These findings strongly support the hypothesis that inhibition of PDE4D is pivotal to the anesthesia-reversing effect of PMNPQ and is likely responsible for emesis induced by PDE4 inhibitors.
The type 4 cAMP-specific phosphodiesterases (PDE4s) are Mg(2+)-dependent hydrolases that catalyze the hydrolysis of 3', 5'-cAMP to AMP. Previous studies indicate that PDE4 exists in two conformations that bind the inhibitor rolipram with affinities differing by more than 100-fold. Here we report that these two conformations are the consequence of PDE4 binding to its metal cofactor such as Mg(2+). Using a fluorescence resonance energy transfer (FRET)-based equilibrium binding assay, we identified that L-791,760, a fluorescent inhibitor, binds to the apoenzyme (free enzyme) and the holoenzyme (enzyme bound to Mg(2+)) with comparable affinities (K(d) approximately 30 nM). By measuring the displacement of the bound L-791,760, we have also identified that other inhibitors bind differentially with the apoenzyme and the holoenzyme depending upon their structure. CDP-840, SB-207499, and RP-73401 bind preferentially to the holoenzyme. The conformational-sensitive inhibitor (R)-rolipram binds to the holoenzyme and apoenzyme with affinities (K(d)) of 5 and 300 nM, respectively. In contrast to its high affinity (K(d) approximately 2 microM) and active holoenzyme complex, cAMP binds to the apoenzyme nonproductively with a reduced affinity (K(d) approximately 170 microM). These results demonstrate that cofactor binding to PDE4 is responsible for eliciting its high-affinity interaction with cAMP and the activation of catalysis.
The diseases of cystic fibrosis, chronic obstructive pulmonary disease (COPD), and chronic bronchitis are characterized by mucus-congested and inflamed airways. Anti-inflammatory agents that can simultaneously restore or enhance mucociliary clearance through cystic fibrosis transmembrane conductance regulator (CFTR) activation may represent new therapeutics in their treatment. Herein, we report the activation of CFTR-mediated chloride secretion by phosphodiesterase (PDE) 4 inhibitors in T84 monolayer using (125)I anion as tracer. In the absence of forskolin, the iodide secretion was insensitive to PDE4 inhibitor L-826,141 [4-[2-(3,4-bis-difluoromethoxyphenyl)-2-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-ethyl]-3-methylpyridine-1-oxide], roflumilast, or to PDE3 inhibitor trequinsin. However, these inhibitors potently augmented iodide secretion after forskolin stimulation, with efficacy coupled to the activation states of adenylyl cyclase. The iodide secretion from PDE3 or PDE4 inhibition was characterized at first by a prolonged efflux duration, followed by progressively elevated peak efflux rates at higher inhibitor concentrations. Paralleled with an increased phosphor-cAMP response element-binding protein formation, the CFTR activation dissociated from a global cAMP elevation and was blocked by H89 [N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide]. 2-(4-Fluorophenoxy)-N-[(1S)-1-(4-methoxyphenyl)ethyl]nicotinamide, a stereoselective PDE4D inhibitor, augmented iodide efflux more efficiently than its less potent (R)-isomer. The peak efflux from maximal PDE4 and PDE3 inhibition matched that from full adenylyl cyclase activation. These data suggest that PDE3 and PDE4 (mainly PDE4D) form the major cAMP diffusion barrier in T84 cells to ensure a compartmentalized CFTR signaling. Together with their potent anti-inflammatory properties, the potentially enhanced airway mucociliary clearance from CFTR activation may have contributed to the efficacy of PDE4 inhibitors in COPD and asthmatic patients. PDE4 inhibitors may represent new opportunities to combat cystic fibrosis and other respiratory diseases in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.