Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a promising therapeutic target for treating coronary heart disease. We report a novel antibody 1B20 that binds to PCSK9 with sub-nanomolar affinity and antagonizes PCSK9 function in-vitro. In CETP/LDLR-hemi mice two successive doses of 1B20, administered 14 days apart at 3 or 10 mpk, induced dose dependent reductions in LDL-cholesterol (≥ 25% for 7-14 days) that correlated well with the extent of PCSK9 occupancy by the antibody. In addition, 1B20 induces increases in total plasma antibody-bound PCSK9 levels and decreases in liver mRNA levels of SREBP-regulated genes PCSK9 and LDLR, with a time course that parallels decreases in plasma LDL-cholesterol (LDL-C). Consistent with this observation in mice, in statin-responsive human primary hepatocytes, 1B20 lowers PCSK9 and LDLR mRNA levels and raises serum steady-state levels of antibody-bound PCSK9. In addition, mRNA levels of several SREBP regulated genes involved in cholesterol and fatty-acid synthesis including ACSS2, FDPS, IDI1, MVD, HMGCR, and CYP51A1 were decreased significantly with antibody treatment of primary human hepatocytes. In rhesus monkeys, subcutaneous (SC) dosing of 1B20 dose-dependently induces robust LDL-C lowering (maximal ~70%), which is correlated with increases in target engagement and total antibody-bound PCSK9 levels. Importantly, a combination of 1B20 and Simvastatin in dyslipidemic rhesus monkeys reduced LDL-C more than either agent alone, consistent with a mechanism of action that predicts additive effects of anti-PCSK9 agents with statins. Our results suggest that antibodies targeting PCSK9 could provide patients powerful LDL lowering efficacy on top of statins, and lower cardiovascular risk.
Bacterial infection remains as one of the major healthcare issues, despite significant scientific and medical progress in this field. Infection by Streptococcus Pneumoniae (S. Pneumoniae) can cause pneumonia and other serious infectious diseases, such as bacteremia, sinusitis and meningitis. The pneumococcal capsular polysaccharides (CPS) that constitute the outermost layer of the bacterial cell are the main immunogens and protect the pathogen from host defense mechanisms. Over 90 pneumococcal CPS serotypes have been identified, among which more than 30 can cause invasive pneumococcal diseases that could lead to morbidity and mortality. Multivalent pneumococcal vaccines have been developed to prevent diseases caused by S. Pneumoniae. These vaccines employ either purified pneumococcal CPSs or protein conjugates of these CPSs to generate antigen-specific immune responses for patient protection. Serotype-specific quantitation of these polysaccharides (Ps) antigen species are required for vaccine clinical dosage, product release and quality control. Herein, we have developed an antibody-enhanced high-performance liquid chromatography (HPLC) assay for serotype-specific quantitation of the polysaccharide contents in multivalent pneumococcal conjugate vaccines (PCVs). A fluorescence-labeled multiplex assay format has also been developed. This work laid the foundation for a serotype-specific antigen assay format that could play an important role for future vaccine research and development.
Pharmacokinetic data derived from assays that accurately and precisely quantitate a therapeutic drug in circulation are critical to appropriately designing suitable dosing schedules. This manuscript describes the validation and implementation of methods to quantitate a therapeutic anti-human PCSK9 monoclonal antibody in rat and monkey sera as well as immunogenicity methods to screen the possible presence of rat and monkey antibodies directed against the antibody. As soluble, endogenous PCSK9 can interfere with a PCSK9-mediated capture step in ELISA, an indirect target-capture assay was used that potentially could capture free and target-engaged therapeutic mAb. Immunogenicity assays were based on a standard bridge ELISA using the therapeutic antibody for capture and detection. Both pharmacokinetic and immunogenicity assays were implemented in preclinical studies of the therapeutic antibody. The methods presented here may enable further pharmacokinetic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.