This paper defines the exact conditions for the application of a previously proposed, general, non-astigmatic, imaging scheme, consisting of a matched pair of spherically bent crystals or reflectors, to x rays. These conditions lead to two specific experimental arrangements, of which one can provide large magnifications. Potential applications include the x-ray diagnosis of laser-produced plasmas and x-ray imaging of, e.g., biological samples, using the highly monochromatic radiation at synchrotron light sources. The results obtained for x rays are, however, valid for a wide spectrum of the electromagnetic radiation so that, for instance, an application of one of the imaging schemes to lithography in the EUV wavelength range should also be possible, if the spherically bent crystals are replaced by appropriate spherical reflectors. Also described is the design of an x-ray crystal spectrometer, which meets the here defined, necessary requirements for the observation of the x-ray spectra of helium-like argon.Keywords: Non-astigmatic imaging, large angles of incidence and uniform magnification, imaging of biological samples, EUV lithography, x-ray diagnosis of laser-produced plasmas, monochromatic radiation from synchrotron light sources
This paper describes a new x-ray scheme for stigmatic imaging. The scheme consists of one convex spherically bent crystal and one concave spherically bent crystal. The radii of curvature and Bragg reflecting lattice planes of the two crystals are properly matched to eliminate the astigmatism, so that the conditions for stigmatic imaging are met for a particular wavelength. The magnification is adjustable and solely a function of the two Bragg angles or angles of incidence. Although the choice of Bragg angles is constrained by the availability of crystals, this is not a severe limitation for the imaging of plasmas, since a particular wavelength can be selected from the bremsstrahlung continuum. The working principle of this imaging scheme has been verified with visible light. Further tests with x rays are planned for the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.