In a study designed to determine whether cytotoxic T lymphocytes contribute to immunity against influenza virus infection, we inoculated 63 volunteers intranasally with live unattenuated influenza A/Munich/1/79 virus. Over the next seven days clinical observations were made, and the amount of virus shed was measured. The protective effects of preinfection serum antibody and of cytotoxic T-cell immunity against influenza A virus were assessed for each participant. All subjects with demonstrable T-cell responses cleared virus effectively. This response was observed in volunteers in all age groups, including those born after 1956, who did not have specific antibody and hence had probably not been exposed to this subtype of influenza A virus before. Cytotoxic T cells show cross-reactivity in their recognition of the different subtypes of influenza A virus, in contrast to the antibody response that is specific for each virus subtype. We conclude that cytotoxic T cells play a part in recovery from influenza virus infection.
In a longitudinal study of HIV seropositive patients, there were fluctuations in the specificity of cytotoxic T cells for the virus. This was matched by variability in proviral gag DNA epitope sequences in the lymphocytes of these patients. Some of these viral variants are not recognized by autologous T cells. Accumulation of such mutations in T-cell antigenic targets would provide a mechanism for immune escape.
The protective association between the human leukocyte antigen HLA-B53 and severe malaria was investigated by sequencing of peptides eluted from this molecule followed by screening of candidate epitopes from pre-erythrocytic-stage antigens of Plasmodium falciparum in biochemical and cellular assays. Among malaria-immune Africans, HLA-B53-restricted cytotoxic T lymphocytes recognized a conserved nonamer peptide from liver-stage-specific antigen-1 (LSA-1), but no HLA-B53-restricted epitopes were identified in other antigens. These findings indicate a possible molecular basis for this HLA-disease association and support the candidacy of liver-stage-specific antigen-1 as a malaria vaccine component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.