Longitudinal chromatic aberration (LCA) causes short wavelengths to be focused in front of long wavelengths. This chromatic signal is evidently used to guide ocular accommodation. We asked whether chick eyes exposed to static gratings simulating the chromatic effects of myopic or hyperopic defocus would “compensate” for the simulated defocus. We alternately exposed one eye of each chick to a sine-wave grating (5 or 2 cycle/deg) simulating myopic defocus (“MY defocus”: image focused in front of retina; hence, red contrast higher than blue) and the other eye to a grating of the same spatial frequency simulating hyperopic defocus (“HY defocus”: blue contrast higher than red). The chicks were placed in a drum with one eye covered, with one grating, and then switched to another drum with the other eye covered, with the other grating. To minimize the effects of altered eye-growth on image contrast, we studied only the earliest responses: first, we measured changes in choroidal thickness 45 min to 1 hour after one 15-min episode in the drum, then we measured glycosaminoglycans (GAG) synthesis in sclera and choroid (by the incorporation of labeled sulfate in tissue culture) after a day of four 30-min episodes in the drum. The eyes compensated in the appropriate directions: The choroids of the eyes exposed to the HY simulation showed significantly more thinning (less thickening) over the course of the experiment than the choroids of the eyes exposed to the MY simulation (all groups mean: −17 μm; 5 c/d groups: −24 μm; paired t-test (one-tailed): p=0.0006). The rate of scleral GAG synthesis in the eye exposed to the HY simulation was significantly greater than in the eye exposed to the MY simulation (HY/MY ratio = 1.20; one sample t-test (one-tailed): p=0.015). There was no significant interaction between the sign of the simulated defocus and either the spatial frequency or the presence of a +3 D lens used to compensate for the 33 cm distance of the drum. Although previous work has shown that chromatic cues to defocus are not essential for lens-compensation, in that chicks can compensate in monochromatic light, our evidence implies that the eye may be able to infer whether the eye is myopic or hyperopic from the different chromatic contrasts that result from different signs of defocus.
Chick eyes compensate for defocus imposed by spectacle lenses by making compensatory changes in eye length and choroidal thickness, a laboratory model of emmetropization. To investigate the roles of longitudinal chromatic aberration and of chromatic mechanisms in emmetropization, we examined the participation of different cone classes, and we compared the efficacy of lens compensation under monochromatic illumination with that under white light of the same illuminance to the chick eye. Chicks wore positive or negative 6 D or 8 D lenses on one eye for three days, under either blue (460nm) or red (620nm) light at 0.67 lux or under white light at 0.67 or 0.2 lux (all measures are corrected for chick photopic sensitivity). The illumination conditions were chosen to differentially stimulate either the short-wavelength and ultraviolet cones or the long-wavelength and double cones. Measurements are expressed as the relative change: the inter-ocular difference in the amount of change over the three days of lens wear. We find that under this low illumination the two components of lens compensation were differentially affected by the monochromatic illumination: in blue light lens compensation was mainly due to changes in eye length, whereas in red light lens compensation was mainly due to changes in choroidal thickness. In general, white light produced better lens compensation than monochromatic illumination. Negative lenses Under white light negative lenses caused an increase in eye length (60 μm) together with a decrease in choroidal thickness (-51 μm) relative to the fellow eye. Under blue light, although there was an increase in eye length (32 μm), there was no change in choroidal thickness (5 μm). In contrast, under red light there was a decrease in choroidal thickness (-62 μm) but no increase in eye length (8 μm). Relative ocular elongation was the same in white and monochromatic light. Positive lenses Under white light positive lenses caused a decrease in eye length (-142 μm) together with an increase in choroidal thickness (68 μm) relative to the fellow eye. Under blue light, there was a decrease in eye length (-64 μm), but no change in choroidal thickness (2 μm). In contrast, under red light there was an increase (90 μm) in choroidal thickness but less of a decrease (-36 μm) in eye length. Lens compensation by inhibition of ocular elongation was less effective under monochromatic illumination than under white light (white v red: p=0.003; white v blue p=0.014). The differential effects of red and blue light on the choroidal and ocular length compensatory responses suggest that they are driven by different proportions of the cone-types, implying that, although chromatic contrast is not essential for lens compensation and presumably for emmetropization as well, the retinal substrates exist for utilizing chromatic contrast in these compensatory responses. The generally better lens compensation in white than monochromatic illumination suggests that longitudinal chromatic aberration may be used in lens compensation.
Illuminants rich in blue light can protect against myopic eye growth when the eye is exposed to slow changes in luminance contrast as might occur with near work.
Citation information: Rucker FJ. The role of luminance and chromatic cues in emmetropisation. Ophthalmic Physiol Opt 2013, 33, 196- Abstract Purpose: At birth most, but not all eyes, are hyperopic. Over the course of the first few years of life the refraction gradually becomes close to zero through a process called emmetropisation. This process is not thought to require accommodation, though a lag of accommodation has been implicated in myopia development, suggesting that the accuracy of accommodation is an important factor. This review will cover research on accommodation and emmetropisation that relates to the ability of the eye to use colour and luminance cues to guide the responses. Recent Findings: There are three ways in which changes in luminance and colour contrast could provide cues: (1) The eye could maximize luminance contrast. Monochromatic light experiments have shown that the human eye can accommodate and animal eyes can emmetropise using changes in luminance contrast alone. However, by reducing the effectiveness of luminance cues in monochromatic and white light by introducing astigmatism, or by reducing light intensity, investigators have revealed that the eye also uses colour cues in emmetropisation. (2) The eye could compare relative cone contrast to derive the sign of defocus information from colour cues. Experiments involving simulations of the retinal image with defocus have shown that relative cone contrast can provide colour cues for defocus in accommodation and emmetropisation. In the myopic simulation the contrast of the red component of a sinusoidal grating was higher than that of the green and blue component and this caused relaxation of accommodation and reduced eye growth. In the hyperopic simulation the contrast of the blue component was higher than that of the green and red components and this caused increased accommodation and increased eye growth. (3) The eye could compare the change in luminance and colour contrast as the eye changes focus. An experiment has shown that changes in colour or luminance contrast can provide cues for defocus in emmetropisation. When the eye is exposed to colour flicker the eye grows almost twice as much, and becomes more myopic, compared to when the eye is exposed to luminance flicker. Summary: Neural responses of the luminance and colour mechanisms direct accommodation and emmetropisation mechanisms to different focal planes. Therefore, it is likely that the set point of refraction and accommodation is dependent on the sensitivity of the eye to changes in spatial and temporal, colour and luminance contrast.
As the eye changes focus, the resulting changes in cone contrast are associated with changes in color and luminance. Color fluctuations should simulate the eye being hyperopic and make the eye grow in the myopic direction, while luminance fluctuations should simulate myopia and make the eye grow in the hyperopic direction. Chicks without lenses were exposed daily (9 a.m. to 5 p.m.) for three days on two consecutive weeks to 2 Hz sinusoidally modulated illumination (mean illuminance of 680 lux) to one of the following: in-phase modulated luminance flicker (LUM), counterphase-modulated red/green (R/G Color) or blue/yellow flicker (B/Y Color), combined color and luminance flicker (Color + LUM), reduced amplitude luminance flicker (Low LUM), or no flicker. After the three-day exposure to flicker, chicks were kept in a brooder under normal diurnal lighting for four days. Changes in the ocular components were measured with ultrasound and with a Hartinger Coincidence Refractometer (aus Jena, Jena, East Germany. After the first three-day exposure, luminance flicker produced more hyperopic refractions (LUM: 2.27 D) than did color flicker (R/G Color: 0.09 D; B/Y Color: -0.25 D). Changes in refraction were mainly due to changes in eye length, with color flicker producing much greater changes in eye length than luminance flicker (R/G Color: 102 μm; B/Y Color: 98 μm; LUM: 66 μm). Our results support the hypothesis that the eye can differentiate between hyperopic and myopic defocus on the basis of the effects of change in luminance or color contrast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.