The majority of gene-targeting experiments in mice are performed in 129Sv-derived embryonic stem (ES) cell lines, which are generally considered to be more reliable at colonizing the germ line than ES cells derived from other strains. Gene targeting is reliant on homologous recombination of a targeting vector with the host ES cell genome. The efficiency of recombination is affected by many factors, including the isogenicity (H. te Riele et al., 1992, Proc. Natl. Acad. Sci. USA 89, 5128-5132) and the length of homologous sequence of the targeting vector and the location of the target locus. Here we describe the double-end sequencing and mapping of 84,507 bacterial artificial chromosomes (BACs) generated from AB2.2 ES cell DNA (129S7/SvEvBrd-Hprtb-m2). We have aligned these BACs against the mouse genome and displayed them on the Ensembl genome browser, DAS: 129S7/AB2.2. This library has an average insert size of 110.68 kb and average depth of genome coverage of 3.63- and 1.24-fold across the autosomes and sex chromosomes, respectively. Over 97% of the mouse genome and 99.1% of Ensembl genes are covered by clones from this library. This publicly available BAC resource can be used for the rapid construction of targeting vectors via recombineering. Furthermore, we show that targeting vectors containing DNA recombineered from this BAC library can be used to target genes efficiently in several 129-derived ES cell lines.
The 21-23 nucleotide single-stranded RNAs classified as microRNAs (miRNA) perform fundamental roles in a wide range of cellular and developmental processes. miRNAs regulate protein expression through sequence-specific base pairing with target messenger RNAs (mRNA) reducing both their stability and the process of protein translation1, 2. At least 30% of protein coding genes appear to be conserved targets for miRNAs1. In contrast to the protein coding genes3, 4, no public resource of miRNA mouse mutant alleles exists. We have generated a library of highly germ-line transmissible C57BL/6N mouse mutant embryonic stem (ES) cells with targeted deletions for the majority of miRNA genes currently annotated within the miRBase registry5. These alleles have been designed to be highly adaptable research tools that can be efficiently altered to create reporter, conditional and other allelic variants. This ES cell resource can be searched electronically and is available from ES cell repositories for distribution to the scientific community6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.