General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. AbstractHutchinson's paradox of the plankton inspired many studies on the mechanisms of species coexistence. Recent laboratory experiments showed that partitioning of white light allows stable coexistence of red and green picocyanobacteria. Here, we investigate to what extent these laboratory findings can be extrapolated to natural waters. We predict from a parameterized competition model that the underwater light colour of lakes and seas provides ample opportunities for coexistence of red and green phytoplankton species. To test this prediction, we sampled picocyanobacteria of 70 aquatic ecosystems, ranging from clear blue oceans to turbid brown peat lakes. As predicted, red picocyanobacteria dominated in clear waters, whereas green picocyanobacteria dominated in turbid waters. We found widespread coexistence of red and green picocyanobacteria in waters of intermediate turbidity. These field data support the hypothesis that niche differentiation along the light spectrum promotes phytoplankton biodiversity, thus providing a colourful solution to the paradox of the plankton.
The importance of nitrogen (N) versus phosphorus (P) in explaining total cyanobacterial biovolume, the biovolume of specific cyanobacterial taxa, and the incidence of cyanotoxins was determined for 102 north German lakes, using methods to separate the effects of joint variation in N and P concentration from those of differential variation in N versus P. While the positive relationship between total cyanobacteria biovolume and P concentration disappeared at high P concentrations, cyanobacteria biovolume increased continually with N concentration, indicating potential N limitation in highly P enriched lakes. The biovolumes of all cyanobacterial taxa were higher in lakes with above average joint NP concentrations, although the relative biovolumes of some Nostocales were higher in less enriched lakes. Taxa were found to have diverse responses to differential N versus P concentration, and the differences between taxa were not consistent with the hypothesis that potentially N 2 -fixing Nostocales taxa would be favoured in low N relative to P conditions. In particular Aphanizomenon gracile and the subtropical invasive species Cylindrospermopsis raciborskii often reached their highest biovolumes in lakes with high nitrogen relative to phosphorus concentration. Concentrations of all cyanotoxin groups increased with increasing TP and TN, congruent with the biovolumes of their likely producers. Microcystin concentration was strongly correlated with the biovolume of Planktothrix agardhii but concentrations of anatoxin, cylindrospermopsin and paralytic shellfish poison were not strongly related to any individual taxa. Cyanobacteria should not be treated as a single group when considering the potential effects of changes in nutrient loading on phytoplankton community structure and neither should the N 2 -fixing Nostocales. This is of particular importance when considering the occurrence of cyanotoxins, as the two most abundant potentially toxin producing Nostocales in our study were found in lakes with high N relative to P enrichment.
Increases in atmospheric temperature and nutrients from land are thought to be promoting the expansion of harmful cyanobacteria in lakes worldwide, yet to date there has been no quantitative synthesis of long-term trends. To test whether cyanobacteria have increased in abundance over the past ~ 200 years and evaluate the relative influence of potential causal mechanisms, we synthesised 108 highly resolved sedimentary time series and 18 decadal-scale monitoring records from north temperate-subarctic lakes. We demonstrate that: (1) cyanobacteria have increased significantly since c. 1800 ce, (2) they have increased disproportionately relative to other phytoplankton, and (3) cyanobacteria increased more rapidly post c. 1945 ce. Variation among lakes in the rates of increase was explained best by nutrient concentration (phosphorus and nitrogen), and temperature was of secondary importance. Although cyanobacterial biomass has declined in some managed lakes with reduced nutrient influx, the larger spatio-temporal scale of sedimentary records show continued increases in cyanobacteria throughout the north temperate-subarctic regions.
Using a , 1000 lake data set that spans the entire continental United States, we applied empirical modeling approaches to quantify the relative strength of nutrients and water temperature as predictors of cyanobacterial biomass (CBB). Given that cyanobacteria possess numerous traits providing competitive advantage under warmer conditions, we hypothesized that water temperature, in addition to nutrients, is a significant predictor of CBB. Total nitrogen (TN), water temperature, and total phosphorus were all significant predictors of CBB, with TN explaining the most variance. Using multiple linear regression analysis, we found that TN and water temperature provided the best model and explained 25% of the variance in CBB. However, when the data set was divided according to basin type, these same variables explained a higher amount of the variation in deep natural lakes (33%, n 5 253), whereas the least amount of variation was explained by these variables in shallow reservoirs (12%, n 5 307). Competing path models on the full data set using the best variables selected by multiple linear regression show that nitrogen and temperature are indirectly linked to cyanobacteria by association with total algal biomass, which likely reflects changes in light climate and other secondary factors. Our models also indicated that temperature was linked to cyanobacteria by a direct pathway. Under a scenario of atmospheric CO 2 doubling from 1990 levels (resulting in an estimated 3.3uC increase of the maximum lake surface water), we predict on average a doubling of CBB.
Algal bloom reports are on the rise across Canada. While eutrophication is the main driver, other stressors of aquatic ecosystems, specifically climate change and food web alterations from the spread of invasive species and overfishing, are compounding factors acting in concert or independently. Current models can predict the average algal and cyanobacterial biomass concentrations across temperate lakes as a function of nutrients, but models to specifically predict harmful algal composition and toxicity are lacking. At the within-lake scale, where management occurs, strong year to year variations in cyanobacterial blooms remain challenging to explain, let alone predict. The most common cyanotoxins, the hepatotoxic microcystins, are chemically diverse with some variants more toxic than others and with greater propensity for persistence and bioaccumulation. These differences have been largely overlooked, as current guidelines have been based on microcystin-LR, considered the most common variant. Microcystin-LA is also encountered in Canadian waters and appears to exhibit greater persistence and bioaccumulation. With cyanobacterial blooms most likely to increase across the country, including the north, guidelines and policies for cyanotoxins in drinking and recreational waters as well as fish will need to be developed for the protection of ecosystem and human health. Ultimately, control of eutrophication is the most important option for managing toxic cyanobacterial blooms; nitrogen and phosphorus need to be considered as environmental contaminants, as both play a role in controlling the dominance of toxigenic cyanobacteria.Résumé : Les signalements de fleurs d'eau sont en hausse au Canada. Si l'eutrophisation en est la principale cause, d'autres facteurs de stress pour les écosystèmes aquatiques, plus précisément les changements climatiques et les modifications des réseaux trophiques découlant de la propagation d'espèces envahissantes et de la surpêche, agissent de concert avec cette dernière ou de manière indépendante. Les modèles actuels peuvent prédire les concentrations moyennes de biomasse d'algues et de cyanobactéries dans les lacs tempérés en fonction des nutriments, mais des modèles permettant de prédire la composition et la toxicité des algues nuisibles en particulier manquent toujours. À l'échelle d'un lac faisant l'objet d'une gestion, il est difficile d'expliquer et encore plus difficile de prédire les fortes variations interannuelles des proliférations de cyanobactéries observées. Les cyanotoxines les plus répandues, les microcystines hépatotoxiques, sont variées sur le plan chimique, certaines variantes étant plus toxiques que d'autres et plus susceptibles de persister et de se bioaccumuler. Ces différences ont été largement négligées, les directives actuelles étant basées sur la microcystine-LR, considérée comme la variante la plus répandue. La microcystine-LA est également présente dans les eaux canadiennes et semble caractérisée par une persistance et une bioaccumulation plus grandes. Co...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.