Swiss cheese was made from raw milk inoculated with various concentrations of a histamine-producing strain of Lactobacillus buchneri. Histamine production in these cheeses was proportional to the initial number of L. buchneri present in the raw milk. The highest inoculum level tested was 10(5) L. buchneri/ml. This cheese contained 80 mg of histamine/100 g of cheese after 90 d of storage. Only 15 mg of histamine/100 g of cheese were detected after 90 d at the lowest inoculum level, 10(2) L. buchneri/ml. No histamine was detected in any of the Swiss cheese samples until after the brining stage. Perceptible growth of L. buchneri also did not occur until after the warm room treatment. Therefore, control of histamine formation in Swiss cheese requires control of the number of histamine-producing bacteria in the raw milk. A 5.5% NaCl concentration in DeMan, Rogosa, Sharpe (MRS) broth inhibited the production of histamine by L. buchneri, but the concentrations of NaCl typically found in Swiss cheese were not inhibitory. The histamine-producing isolate of L. buchneri survived heating at 49 to 80 degrees C for 10 min, suggesting that this organism would easily survive the normal heating process applied to raw milk used prior to making Swiss cheese.
Schinzel phocomelia syndrome is characterized by limb/pelvis hypoplasia/aplasia: specifically, intercalary limb deficiencies and absent or hypoplastic pelvic bones. The phenotype is similar to that described in a related multiple malformation syndrome known as Al-Awadi/Raas-Rothschild syndrome. The additional important feature of large parietooccipital skull defects without meningocele, encephalocele, or other brain malformation has thus far been reported only in children with Schinzel phocomelia syndrome. We recently evaluated a boy affected with Schinzel phocomelia born to nonconsanguineous healthy parents of Mexican origin. A third-trimester fetal ultrasound scan showed severe limb deficiencies and an absent pelvis. The infant died shortly after birth. Dysmorphology examination, radiographs, and autopsy revealed quadrilateral intercalary limb deficiencies with preaxial toe polydactyly; an absent pelvis and a 7 x 3-cm skull defect; and extraskeletal anomalies including microtia, telecanthus, micropenis with cryptorchidism, renal cysts, stenosis of the colon, and a cleft alveolar ridge. A normal 46,XY karyotype was demonstrated, and autosomal recessive inheritance was presumed on the basis of previously reported families. This case report emphasizes the importance of recognizing severe pelvic and skull deficiencies (either post- or prenatally) in differentiating infants with Schinzel phocomelia from other multiple malformation syndromes that feature intercalary limb defects, including thalidomide embryopathy and Roberts-SC phocomelia.
Schinzel phocomelia syndrome is characterized by limb/pelvis hypoplasia/aplasia: specifically, intercalary limb deficiencies and absent or hypoplastic pelvic bones. The phenotype is similar to that described in a related multiple malformation syndrome known as Al-Awadi/Raas-Rothschild syndrome. The additional important feature of large parietooccipital skull defects without meningocele, encephalocele, or other brain malformation has thus far been reported only in children with Schinzel phocomelia syndrome. We recently evaluated a boy affected with Schinzel phocomelia born to nonconsanguineous healthy parents of Mexican origin. A third-trimester fetal ultrasound scan showed severe limb deficiencies and an absent pelvis. The infant died shortly after birth. Dysmorphology examination, radiographs, and autopsy revealed quadrilateral intercalary limb deficiencies with preaxial toe polydactyly; an absent pelvis and a 7 x 3-cm skull defect; and extraskeletal anomalies including microtia, telecanthus, micropenis with cryptorchidism, renal cysts, stenosis of the colon, and a cleft alveolar ridge. A normal 46,XY karyotype was demonstrated, and autosomal recessive inheritance was presumed on the basis of previously reported families. This case report emphasizes the importance of recognizing severe pelvic and skull deficiencies (either post- or prenatally) in differentiating infants with Schinzel phocomelia from other multiple malformation syndromes that feature intercalary limb defects, including thalidomide embryopathy and Roberts-SC phocomelia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.