Rationale: Nasopharyngeal carriage of Streptococcus pneumoniae is a prerequisite for invasive disease, but the majority of carriage episodes are asymptomatic and self-resolving. Interactions determining the development of carriage versus invasive disease are poorly understood but will influence the effectiveness of vaccines or therapeutics that disrupt nasal colonization.Objectives: We sought to elucidate immunological mechanisms underlying noninvasive pneumococcal nasopharyngeal carriage.Methods: Pneumococcal interactions with human nasopharyngeal and bronchial fibroblasts and epithelial cells were investigated in vitro. A murine model of nasopharyngeal carriage and an experimental human pneumococcal challenge model were used to characterize immune responses in the airways during carriage.
Measurements and Main Results:We describe the previously unknown immunological basis of noninvasive carriage and highlight mechanisms whose perturbation may lead to invasive disease. We identify the induction of active transforming growth factor (TGF)-b1 by S. pneumoniae in human host cells and highlight the key role for TGF-b1 and T regulatory cells in the establishment and maintenance of nasopharyngeal carriage in mice and humans. We identify the ability of pneumococci to drive TGF-b1 production from nasopharyngeal cells in vivo and show that an immune tolerance profile, characterized by elevated TGF-b1 and high nasopharyngeal T regulatory cell numbers, is crucial for prolonged carriage of pneumococci. Blockade of TGF-b1 signaling prevents prolonged carriage and leads to clearance of pneumococci from the nasopharynx.Conclusions: These data explain the mechanisms by which S. pneumoniae colonize the human nasopharynx without inducing damaging host inflammation and provide insight into the role of bacterial and host constituents that allow and maintain carriage.
According to the World Health Organization (WHO), the global nutrition report shows that whilst part of the world’s population starves, the other part suffers from obesity and associated complications. A balanced diet counterparts these extreme conditions with the proper proportion, composition, quantity, and presence of macronutrients, micronutrients, and bioactive compounds. However, little is known on the way these components exert any influence on our health. These nutrients aiming to feed our bodies, our tissues, and our cells, first need to reach mitochondria, where they are decomposed into CO2 and H2O to obtain energy. Mitochondria are the powerhouse of the cell and mainly responsible for nutrients metabolism, but they are also the main source of oxidative stress and cell death by apoptosis. Unappropriated nutrients may support mitochondrial to become the Trojan horse in the cell. This review aims to provide an approach to the role that some nutrients exert on mitochondria as a major contributor to high prevalent Western conditions including metabolic syndrome (MetS), a constellation of pathologic conditions which promotes type II diabetes and cardiovascular risk. Clinical and experimental data extracted from in vitro animal and cell models further demonstrated in patients, support the idea that a balanced diet, in a healthy lifestyle context, promotes proper bioenergetic and mitochondrial function, becoming the best medicine to prevent the onset and progression of MetS. Any advance in the prevention and management of these prevalent complications help to face these challenging global health problems, by ameliorating the quality of life of patients and reducing the associated sociosanitary burden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.