The genetic transfer of antigen receptors provides a means to rapidly generate autologous tumor-reactive T lymphocytes. However, recognition of tumor antigens by cytotoxic T cells is only one step towards effective cancer immunotherapy. Other crucial biological prerequisites must be fulfilled to expand tumor-reactive T cells that retain a functional phenotype, including in vivo cytolytic activity and the ability to travel to tumor sites without prematurely succumbing to apoptosis. We show that these requirements are met by expanding peripheral blood T cells genetically targeted to the CD19 antigen in the presence of CD80 and interleukin-15 (IL-15). T cells expanded in the presence of IL-15 uniquely persist in tumor-bearing severe combined immunodeficiency (SCID)-Beige mice and eradicate disseminated intramedullary tumors. Their anti-tumor activity is further enhanced by in vivo co-stimulation. In addition, transduced T cells from patients with chronic lymphocytic leukemia (CLL) effectively lyse autologous tumor cells. These findings strongly support the clinical feasibility of this therapeutic strategy.
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Liver cancer is generally related to hepatitis B or C infection and cirrhosis. Usually, patients with HCC are asymptomatic and are diagnosed at late stages when surgical treatment is no longer suitable. Limited treatment options for patients with advanced HCC are a major concern. Therefore, there is an urge for finding novel therapies to treat HCC. Liver cancer is highly heterogeneous and involved deregulation of several signaling pathways. Wnt/β-catenin pathway is frequently upregulated in HCC and it is implicated in maintenance of tumor initiating cells, drug resistance, tumor progression, and metastasis. A great effort in developing selective drugs to target components of the β-catenin pathway with anticancer activity is underway but only a few of them have reached phase I clinical trials. We aim to review the role of β-catenin pathway on hepatocarcinogenesis and liver cancer stem cell maintenance. We also evaluated the use of small molecules targeting the Wnt/β-catenin pathway with potential application for treatment of HCC.
The role for inhibitory Fc gamma receptors class IIb (FcgammaRIIb) in the onset, progression and severity of several animal models of autoimmune diseases is well established. By contrast, the pathogenic potential of FcgammaRIIb in human autoimmune diseases remains largely unknown. Here we report the identification of a polymorphism in the human FCGR2B promoter (dbSNP no. rs3219018) that is associated in homozygosity with systemic lupus erythematosus (SLE) phenotype in European-Americans (OR=11.1, P=0.003). Experimental evidence correlates the polymorphism (a G-C substitution at position -343 relative to the start of transcription) with altered FcgammaRIIb expression and function. The G-C substitution correlated with decreased transcription of the FCGR2B promoter, and resulted in decreased binding of the AP1 transcription complex to the mutant promoter sequence. The surface expression of FcgammaRIIb receptors was significantly reduced in activated B cells from (-343 C/C) SLE patients. These findings suggest that genetic defects may lead to deregulated expression of the FCGR2B gene in -343 C/C homozygous subjects, and may play a role in the pathogenesis of human SLE.
Imaging and neuropathology studies have demonstrated significant abnormalities not only in subcortical, but also in cortical regions of patients with multiple system atrophy (MSA). This raises the possibility that cognitive dysfunction may contribute to the clinical spectrum of this disorder to a greater extent than it is currently not widely appreciated. In this cross-sectional multicenter study from the European multiple system atrophy study group ( http://www.emsa-sg.org ), we applied an extensive neuropsychological test battery in a series of 61 clinically diagnosed probable MSA patients. The results demonstrated that general cognitive decline as assessed by MMSE was uncommon (2 out of 61 patients <24). In contrast, frontal lobe-related functions (as measured by FAB) were impaired in 41 % of patients, with abstract reasoning and sustained attention less compromised. This pattern was similar to our control group of 20 patients with Parkinson's disease (matched for disease duration and age at onset). There was no difference in cognitive performance between MSA patients with the parkinsonian versus the cerebellar variant. Behaviourally, MSA patients had greater depression than PD and in the case of MSA of the cerebellar variant significantly lower anxiety. Our data show that cognitive abnormalities are relatively frequent in multiple system atrophy and this involves primarily frontal-executive functions. Their contribution to clinical disability and disease progression needs to be addressed in larger prospective studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.