7Textile-reinforced mortar (TRM) is a composite material that overcomes some drawbacks of other RC 8 (reinforced concrete) shear strengthening solutions. In this work, four different types of TRM are used as a 9 shear strengthening system on RC beams tested until failure. A comparative study of their mechanical 10 performance shows that the different TRM combinations used were able to increase the load bearing 11 capacity and change their failure mode. Moreover, new methodologies that permit evaluating the bonding 12 behaviour of TRM and the increment in flexural toughness are presented. The experimental results are 13 compared with previous FRP and TRM analytical formulations. Finally, new formulae for calculating the 14 shear contribution of TRM based on experimental results are proposed. 15
Although extensive research has been carried out in recent years on the origin and evolution of human bipedalism, a full understanding of this question is far from settled. Miocene hominoids are key to a better understanding of the locomotor types observed in living apes and humans. Pierolapithecus catalaunicus, an extinct stem great ape from the middle Miocene (c. 12.0 Ma) of the Vall es-Pened es Basin (north-eastern Iberian Peninsula), is the first undoubted hominoid with an orthograde (erect) body plan. Its locomotor repertoire included above-branch quadrupedalism and other antipronograde behaviours. Elucidating the adaptive features present in the Pierolapithecus skeleton and its associated biomechanics helps us to better understand the origin of hominoid orthogrady. This work represents a new biomechanical perspective on Pierolapithecus locomotion, by studying its patella and comparing it with those drawn from a large sample of extant anthropoids. This is the first time that the biomechanical patellar performance in living non-human anthropoids and a stem hominid has been studied using finite element analysis (FEA). Differences in stress distribution are found depending on body plan and the presence/absence of a distal apex, probably due to dissimilar biomechanical performances. Pierolapithecus' biomechanical response mainly resembles that of great apes, suggesting a similar knee joint use in mechanical terms. These results underpin previous studies on Pierolapithecus, favouring the idea that a relevant degree of some antipronograde behaviour may have made up part of its locomotor repertoire. Moreover, our results corroborate the presence of modern great ape-like knee biomechanical performances back in the Miocene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.