Dopaminergic neurons of the substantia nigra selectively degenerate over the course of Parkinson's disease. These neurons are also the most heavily pigmented cells of the brain, accumulating the dark pigment neuromelanin over a lifetime. The massive presence of neuromelanin in these brain areas has long been suspected as a key factor involved in the selective vulnerability of neurons. The high concentration of neuromelanin in substantia nigra neurons seems to be linked to the presence of considerable amounts of cytosolic dopamine that have not been sequestered into synaptic vesicles. Over the past few years, studies have uncovered a dual nature of neuromelanin. Intraneuronal neuromelanin can be a protective factor, shielding the cells from toxic effects of redox active metals, toxins, and excess of cytosolic catecholamines. In contrast, neuromelanin released by dying neurons can contribute to the activation of neuroglia triggering the neuroinflammation that characterizes Parkinson's disease. This article reviews recent studies on the molecular aspects of neuromelanin of the human substantia nigra.
During aging, neuronal organelles filled with neuromelanin (a dark-brown pigment) and lipid bodies accumulate in the brain, particularly in the substantia nigra, a region targeted in Parkinson’s disease. We have investigated protein and lipid systems involved in the formation of these organelles and in the synthesis of the neuromelanin of human substantia nigra. Membrane and matrix proteins characteristic of lysosomes were found in neuromelanin-containing organelles at a lower number than in typical lysosomes, indicating a reduced enzymatic activity and likely impaired capacity for lysosomal and autophagosomal fusion. The presence of proteins involved in lipid transport may explain the accumulation of lipid bodies in the organelle and the lipid component in neuromelanin structure. The major lipids observed in lipid bodies of the organelle are dolichols with lower amounts of other lipids. Proteins of aggregation and degradation pathways were present, suggesting a role for accumulation by this organelle when the ubiquitin-proteasome system is inadequate. The presence of proteins associated with aging and storage diseases may reflect impaired autophagic degradation or impaired function of lysosomal enzymes. The identification of typical autophagy proteins and double membranes demonstrates the organelle’s autophagic nature and indicates that it has engulfed neuromelanin precursors from the cytosol. Based on these data, it appears that the neuromelanin-containing organelle has a very slow turnover during the life of a neuron and represents an intracellular compartment of final destination for numerous molecules not degraded by other systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.