Notch2 mutations represent the most frequent lesion in splenic marginal zone lymphoma.
Key Points• CLL lymphocytes show high intracellular and extracellular NAMPT levels, further increased upon activation.• eNAMPT prompts differentiation of CLL monocytes into M2 macrophages that sustain CLL survival and reduce T-cell proliferation.Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in nicotinamide adenine dinucleotide biosynthesis. In the extracellular compartment, it exhibits cytokine-/adipokinelike properties, suggesting that it stands at the crossroad between metabolism and inflammation. Here we show that both intracellular and extracellular NAMPT levels are increased in cells and plasma of chronic lymphocytic leukemia (CLL) patients. The extracellular form (eNAMPT) is produced by CLL lymphocytes upon B-cell receptor, Toll-like receptor, and nuclear factor kB (NF-kB) signaling pathway activation. eNAMPT is important for differentiation of resting monocytes, polarizing them toward tumor-supporting M2 macrophages. These cells express high levels of CD163, CD206, and indoleamine 2,3-dioxygenase and secrete immunosuppressive (interleukin [IL] 10, CC chemokine ligand 18) and tumor-promoting (IL-6, IL-8) cytokines. NAMPT-primed M2 macrophages activate extracellular-regulated kinase 1/2, signal transducer and activator of transcription 3, and NF-kB signaling; promote leukemic cell survival; and reduce T-cell responses. These effects are independent of the enzymatic activity of NAMPT, as inferred from the use of an enzymatically inactive mutant. Overall, these results reveal that eNAMPT is a critical element in the induction of an immunosuppressive and tumor-promoting microenvironment of CLL. (Blood. 2015;125(1):111-123) IntroductionBesides being the first line of defense against pathogens, macrophages orchestrate tissue plasticity and homeostasis. They are classified into classically activated (M1) or alternatively activated (M2) macrophages, reflecting a different functional role. 1 In cancer tissues, macrophages tend to be of the M2 phenotype, acquired and maintained through multiple interactions with tumor cells.2 Evidence indicates that these macrophages enhance tumor progression, mainly through the secretion of chemokines/cytokines that sustain neoplastic the cell proliferation and suppress immune responses. 3,4 Chronic lymphocytic leukemia (CLL) is a disease of mature B cells, which rely on the host environment for progression. [5][6][7] Tumor-host interactions occur predominantly in protected niches in the lymph nodes (LNs) and in the bone marrow, known as proliferation centers. 8,9 Within these areas, CLL cells are in contact with a population of CD681 elements, resembling tumor-associated macrophages. [10][11][12][13] They may be also differentiated in vitro by coculturing peripheral blood monocytes with CLL cells. These so-called nurselike cells (NLCs) protect leukemic cells from apoptosis through multiple interactions regulated by soluble or cell-surface-anchored molecules. 14,15 Leukemic cells play an essential role in driving NLC differentiation, as inferred fr...
The purpose of this study was to compare the expression and function of NOTCH1 in chronic lymphocytic leukemia (CLL) patients harboring a wild-type (WT) or mutated NOTCH1 gene. NOTCH1 mRNA and surface protein expression levels were independent of the NOTCH1 gene mutational status, consistent with the requirement for NOTCH1 signaling in this leukemia. However, compared with NOTCH1-WT CLL, mutated cases displayed biochemical and transcriptional evidence of an intense activation of the NOTCH1 pathway. In vivo, expression and activation of NOTCH1 was highest in CLL cells from the lymph nodes as confirmed by immunohistochemistry. In vitro, the NOTCH1 pathway was rapidly downregulated, suggesting that signaling relies upon micro-environmental interactions even in NOTCH1-mutated cases. Accordingly, co-culture of Jagged1(+) (the NOTCH1 ligand) nurse-like cells with autologous CLL cells sustained NOTCH1 activity over time and mediated CLL survival and resistance against pro-apoptotic stimuli, both abrogated when NOTCH1 signaling was pharmacologically switched off. Together, these results show that NOTCH1 mutations have stabilizing effects on the NOTCH1 pathway in CLL. Furthermore, micro-environmental interactions appear critical in activating the NOTCH1 pathway both in WT and mutated patients. Finally, NOTCH1 signals may create conditions that favor drug resistance, thus making NOTCH1 a potential molecular target in CLL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.