The European Commission has requested EFSA to assess animal diseases according to the criteria as laid down in Articles 5, 7, 8 and Annex IV for the purpose of categorisation of diseases in accordance with Article 9 of the Regulation (EU) No 2016/429 (Animal Health Law). This scientific opinion addresses the ad hoc method developed for assessing any animal disease for the listing and categorisation of diseases within the Animal Health Law (AHL) framework. The assessment of individual diseases is addressed in distinct scientific opinions that are published separately. The assessment of Articles 5, 8 and 9 criteria is performed on the basis of the information collected according to Article 7 criteria. For that purpose, Article 7 criteria were structured into parameters and the information was collected at parameter level. The resulting fact sheets on the profile and impact of each disease were compiled by disease scientists. A mapping was developed to identify which parameters from Article 7 were needed to inform each Article 5, 8 and 9 criterion. Specifically, for Articles 5 and 9 criteria, a categorical assessment was performed, by applying an expert judgement procedure, based on the mapped information. The judgement was performed by EFSA Panel experts on Animal Health and Welfare in two rounds, individual and collective judgement. The output of the expert judgement on the criteria of Articles 5 and 9 for each disease is composed by the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported.
American mink and ferret are highly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but no information is available for other mustelid species. SARS-CoV-2 spreads very efficiently within mink farms once introduced, by direct and indirect contact, high within-farm animal density increases the chance for transmission. Between-farm spread is likely to occur once SARS-CoV-2 is introduced, short distance between SARS-CoV-2 positive farms is a risk factor. As of 29 January 2021, SARS-CoV-2 virus has been reported in 400 mink farms in eight countries in the European Union. In most cases, the likely introduction of SARS-CoV-2 infection into farms was infected humans. Human health can be at risk by mink-related variant viruses, which can establish circulation in the community, but so far these have not shown to be more transmissible or causing more severe impact compared with other circulating SARS-CoV-2. Concerning animal health risk posed by SARS-CoV-2 infection the animal species that may be included in monitoring plans are American mink, ferrets, cats, raccoon dogs, white-tailed deer and Rhinolophidae bats. All mink farms should be considered at risk of infection; therefore, the monitoring objective should be early detection. This includes passive monitoring (in place in the whole territory of all countries where animals susceptible to SARS-CoV-2 are bred) but also active monitoring by regular testing. First, frequent testing of farm personnel and all people in contact with the animals is recommended. Furthermore randomly selected animals (dead or sick animals should be included) should be tested using reverse transcriptase-polymerase chain reaction (RT-PCR), ideally at weekly intervals (i.e. design prevalence approximately 5% in each epidemiological unit, to be assessed case by case). Suspected animals (dead or with clinical signs and a minimum five animals) should be tested for confirmation of SARS-CoV-2 infection. Positive samples from each farm should be sequenced to monitor virus evolution and results publicly shared.
The 2021–2022 highly pathogenic avian influenza (HPAI) epidemic season is the largest epidemic so far observed in Europe, with a total of 2,398 outbreaks in poultry, 46 million birds culled in the affected establishments, 168 detections in captive birds, and 2,733 HPAI events in wild birds in 36 European countries. Between 16 March and 10 June 2022, 1,182 HPAI virus detections were reported in 28 EU/EEA countries and United Kingdom in poultry (750), and in wild (410) and captive birds (22). During this reporting period, 86% of the poultry outbreaks were secondary due to between‐farm spread of HPAI virus. France accounted for 68% of the overall poultry outbreaks, Hungary for 24% and all other affected countries for less than 2% each. Most detections in wild birds were reported by Germany (158), followed by the Netherlands (98) and the United Kingdom (48). The observed persistence of HPAI (H5) virus in wild birds since the 2020–2021 epidemic wave indicates that it may have become endemic in wild bird populations in Europe, implying that the health risk from HPAI A(H5) for poultry, humans, and wildlife in Europe remains present year‐round, with the highest risk in the autumn and winter months. Response options to this new epidemiological situation include the definition and the rapid implementation of suitable and sustainable HPAI mitigation strategies such as appropriate biosecurity measures and surveillance strategies for early detection measures in the different poultry production systems. Medium to long‐term strategies for reducing poultry density in high‐risk areas should also be considered. The results of the genetic analysis indicate that the viruses currently circulating in Europe belong to clade 2.3.4.4b. HPAI A(H5) viruses were also detected in wild mammal species in Canada, USA and Japan, and showed genetic markers of adaptation to replication in mammals. Since the last report, four A(H5N6), two A(H9N2) and two A(H3N8) human infections were reported in China and one A(H5N1) in USA. The risk of infection is assessed as low for the general population in the EU/EEA, and low to medium for occupationally exposed people.
SUMMARYA retrospective telephone survey (n=3490) was conducted in Italy between 2008 and 2009 to estimate the occurrence of self-reported acute gastrointestinal illness (AGI) and to describe subjects' recourse to healthcare, using a symptom-based case definition. Three hundred and ten AGI cases were identified. The annual incidence rate was 1·08 episodes/person-year (95% confidence interval 0·90–1·14). The proportion of subjects consulting physicians was 39·5% while only 0·3% submitted a specimen for laboratory investigation. Risk factors for AGI and medical care-seeking were identified using logistic regression analysis. Females, children and young adults had a significantly higher incidence rate of AGI. Factors associated with medical care-seeking were age <10 years, presence of fever, diarrhoea, and duration of illness >3 days. Our results provide a relevant contribution towards estimating the global burden of AGI using standard methods that ensure a good level of comparability with other studies.
The 2021-2022 highly pathogenic avian influenza (HPAI) epidemic season is the largest HPAI epidemic so far observed in Europe, with a total of 2,467 outbreaks in poultry, 47.7 million birds culled in the affected establishments, 187 outbreaks in captive birds, and 3,573 HPAI virus detections in wild birds with an unprecedent geographical extent reaching from Svalbard islands to South Portugal and Ukraine, affecting 37 European countries. Between 11 June and 9 September 2022, 788 HPAI virus detections were reported in 16 European countries in poultry (56), captive ( 22) and wild birds (710). Several colony-breeding seabird species exhibited widespread and massive mortality from HPAI A(H5N1) virus along the northwest coast of Europe. This resulted in an unprecedentedly high level of HPAI virus detections in wild birds between June and August 2022 and represents an ongoing risk of infection for domestic birds. HPAI outbreaks were still observed in poultry from June to September with five-fold more infected premises than observed during the same period in 2021 and mostly distributed along the Atlantic coast. Response options to this new epidemiological situation include the definition and rapid implementation of suitable and sustainable HPAI mitigation strategies such as appropriate biosecurity measures and surveillance strategies for early detection in the different poultry production systems. The viruses currently circulating in Europe belong to clade 2.3.4.4b with seven genotypes, three of which identified for the first time during this time period, being detected during summer. HPAI A(H5) viruses were also detected in wild mammal species in Europe and North America and showed genetic markers of adaptation to replication in mammals. Since the last report, two A(H5N6), two A(H9N2) and one A(H10N3) human infections were reported in China. The risk of infection is assessed as low for the general population in the EU/EEA, and low to medium for occupationally exposed people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.