The structural properties of free nanoclusters are reviewed. Special attention is paid to the interplay of energetic, thermodynamic and kinetic factors in the explanation of the clusters structures which are actually observed in the experiments. The review starts with a brief summary of the experimental methods for the production of free nanoclusters, and then proceeds with a guideline given by theoretical and simulation issues, always discussed in close connection with the experimental results. The energetic properties are treated first, evidencing general trends, describing the methods for modelling the interactions between the elementary cluster constituents, and for the global optimization on the cluster potential energy surface. After that, a chapter on cluster thermodynamics follows. The discussion includes the analysis of solid-solid structural transitions, and of melting with its size dependence. The last part is devoted to the growth kinetics of free nanoclusters, and treats the growth of isolated clusters and their coalescence. Several specific systems are analyzed.
The energetics of nanoclusters is investigated for five different metals (Ag, Cu, Au, Pd, and Pt) by means of quenched molecular dynamics simulations. Results are obtained for two different semiempirical potentials. Three different structural motifs are considered: icosahedra (Ih), decahedra (Dh), and truncated octahedra (TO). The crossover sizes among structural motifs are directly calculated, considering cluster up to sizes N≃40 000. For all the systems considered, it is found that icosahedra are favored at small sizes, decahedra at intermediate sizes, and truncated octahedra at large sizes. However, the crossover sizes depend strongly on the metal: in Cu, the icosahedral interval is rather large, and it is followed by a very wide decahedral window; on the contrary, in Au, the icosahedral interval is practically absent, and the decahedral window is narrow. The other metals display intermediate behaviors, Ag being close to Cu, and Pd and Pt being close to Au. A simple criterion, which is based on the ratio between the bulk modulus and the cohesive energy per atom, is developed to account for the differences among the metals.
A new family of magic cluster structures is found by genetic global optimization, whose results are confirmed by density functional calculations. These clusters are Ag-Ni and Ag-Cu nanoparticles with an inner Ni or Cu core and an Ag external shell, as experimentally observed for Ag-Ni, and present a polyicosahedral character. The interplay of the core-shell chemical ordering with the polyicosahedral structural arrangement gives high-symmetry clusters of remarkable structural, thermodynamic, and electronic stability, which can have high melting points (they melt higher than pure clusters of the same size), large energy gaps, and (in the case of Ag-Ni) nonzero magnetic moments.
We show by molecular dynamics simulations on three systems (B/A=Pd/Ag, Cu/Ag, and Ni/Ag) that three-shell metallic nanoparticles made by a core of a metal A, an intermediate shell of metal B and an external shell of metal A (A-B-A nanoparticles) can be grown by deposition of B atoms onto an A core. The growth of the intermediate B shell is triggered by the fact that the most favorable positions for isolated B impurities inside A clusters are located just one layer below the cluster surface.
We show by molecular dynamics simulations that the melting temperature of clusters can be tuned by selective doping. In fact, a single Ni or Cu impurity in Ag icosahedral clusters considerably increases the melting temperature even for sizes of more than a hundred atoms. The upward shift is correlated to the strain relaxation induced by a small central impurity in icosahedral clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.