The objective of this paper is to evaluate adaptations in hepatic mitochondrial protein mass, function and efficiency in a rat model of high-fat diet-induced obesity and insulin resistance that displays several correlates to human obesity. Adult male rats were fed a high-fat diet for 7 weeks. Mitochondrial state 3 and state 4 respiratory capacities were measured in liver homogenate and isolated mitochondria by using nicotinamide adenine dinucleotide, flavin adenine dinucleotide and lipid substrates. Mitochondrial efficiency was evaluated by measuring proton leak kinetics. Mitochondrial mass was assessed by ultrastructural observations and citrate synthase (CS) activity measurements. Mitochondrial oxidative damage and antioxidant defence were also considered by measuring lipid peroxidation, aconitase and superoxide dismutase (SOD) specific activity. Whole body metabolic characteristics were obtained by measuring 24-h oxygen consumption (VO 2 ), carbon dioxide production (VCO 2 ), respiratory quotient (RQ) and nonprotein respiratory quotient (NPRQ), using indirect calorimetry with urinary nitrogen analysis. Whole body glucose homeostasis was assessed by measuring plasma insulin and glucose levels after a glucose load. Adult rats fed a high-fat diet for 7 weeks, exhibit not only obesity, insulin resistance and hepatic steatosis, but also reduced respiratory capacity and increased oxidative stress in liver mitochondria. Our present results indicate that alterations in the mitochondrial compartment induced by a high-fat diet are associated with the development of insulin resistance and ectopic fat storage in the liver. Our results thus fit in with the emerging idea that mitochondrial dysfunction can led to the development of metabolic diseases, such as obesity, type 2 diabetes mellitus and nonalcoholic steatohepatitis.
Liver mitochondrial compartment is highly affected by fructose feeding. The increased mitochondrial efficiency allows liver cells to burn less substrates to produce ATP for de novo lipogenesis and gluconeogenesis. In addition, increased lipogenesis gives rise to whole body and ectopic lipid deposition, and higher mitochondrial coupling causes mitochondrial oxidative stress.
Objective: To investigate whether changes in body energy balance induced by long-term high-fat feeding in adult rats could be associated with modifications in energetic behaviour and oxidative stress of skeletal muscle subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial populations. Design: Adult rats were fed low-fat or high-fat diet for 7 weeks. Measurements: Body energy balance and composition analysis together with plasma insulin and glucose level determination in the whole animal. Oxidative capacity, basal and induced proton leaks as well as aconitase and superoxide dismutase activities in SS and IMF mitochondria from skeletal muscle. Results: High-fat fed rats exhibit increased body lipid content, as well as hyperinsulinemia, hyperglycaemia and higher plasma non-esterified fatty acids. In addition, SS mitochondria display lower respiratory capacity and a different behaviour of SS and IMF mitochondria is found in the prevention from oxidative damage. Conclusions: A deleterious consequence of decreased oxidative capacity in SS mitochondria from rats fed high-fat diet would be a reduced utilization of energy substrates, especially fatty acids, which may lead to intracellular triglyceride accumulation, lipotoxicity and insulin resistance development. Our results thus reveal a possible role for SS mitochondria in the impairment of glucose homeostasis induced by high-fat diet.
New Findings r What is the central question of this study?In humans, 'Western-style' diet is characterized by high levels of both saturated fats and fructose. Lipid oversupply to the liver typical of high-fat diets could be exacerbated by the coexistence of high levels of fat and fructose in the diet, thus accelerating the development of metabolic deregulation. r What is the main finding and its importance?Short-term consumption of a Western diet, rich in saturated fats and fructose, is more conducive to the development of liver steatosis and deleterious to glucose homeostasis than a high-fat diet. This result points to the harmful effect of adding fructose to the usual Western, high-fat diet.The purpose of the present study was to examine the short-term effect of high-fat or high-fat-high-fructose feeding on hepatic lipid metabolism and mitochondrial function in adult sedentary rats. Adult male rats were fed a high-fat or high-fat-high-fructose diet for 2 weeks. Body and liver composition, hepatic steatosis, plasma lipid profile and hepatic insulin sensitivity, together with whole-body and hepatic de novo lipogenesis, were assessed. Hepatic mitochondrial mass, functionality, oxidative stress and antioxidant defense were also measured. Rats fed the high-fat-high-fructose diet exhibited significantly higher plasma triglycerides, non-esterified fatty acids, insulin and indexes of hepatic insulin resistance compared with rats fed a low-fat or a high-fat diet. Hepatic triglycerides and ceramide, as well as the degree of steatosis and necrosis, were significantly higher, while liver p-Akt was significantly lower, in rats fed high-fat-high-fructose diet than in rats fed high-fat diet. A significant increase in non-protein respiratory quotient and hepatic fatty acid synthase and stearoyl CoA desaturase activity was found in rats fed the high-fat-high-fructose diet compared with those fed the high-fat diet. Significantly lower mitochondrial oxidative capacity but significantly higher oxidative stress was found in rats fed high-fat and high-fat-high-fructose diets compared with rats fed low-fat diet, while mitochondrial mass significantly increased only in rats fed high-fat-high-fructose diet. In conclusion, short-term consumption of a Western diet, rich in saturated fats and fructose, is more conducive to the development of liver steatosis and deleterious to glucose homeostasis than a high-fat diet.
Insulin resistance, “a relative impairment in the ability of insulin to exert its effects on glucose, protein and lipid metabolism in target tissues,” has many detrimental effects on metabolism and is strongly correlated to deposition of lipids in non-adipose tissues. Mitochondria are the main cellular sites devoted to ATP production and fatty acid oxidation. Therefore, a role for mitochondrial dysfunction in the onset of skeletal muscle insulin resistance has been proposed and many studies have dealt with possible alteration in mitochondrial function in obesity and diabetes, both in humans and animal models. Data reporting evidence of mitochondrial dysfunction in type two diabetes mellitus are numerous, even though the issue that this reduced mitochondrial function is causal in the development of the disease is not yet solved, also because a variety of parameters have been used in the studies carried out on this subject. By assessing the alterations in mitochondrial efficiency as well as the impact of this parameter on metabolic homeostasis of skeletal muscle cells, we have obtained results that allow us to suggest that an increase in mitochondrial efficiency precedes and therefore can contribute to the development of high-fat-induced insulin resistance in skeletal muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.