The sequence encoding a superoxide dismutase (SOD) was isolated from the cDNA library of a zinc-tolerant strain of the ericoid mycorrhizal fungus Oidiodendron maius, grown under zinc-stress conditions. Sequence homology to other SODs strongly suggests that it is a copper- and zinc-containing SOD. Functional complementation assays showed that the gene confers increased tolerance to zinc and copper stress to a Cu,ZnSOD-defective yeast mutant. Monitoring of transcript and protein levels following zinc stress suggests that OmSOD1 expression is controlled at the transcriptional level. The OmSod1 protein was found both in the cell extract and in the growth medium of viable fungal cultures. This is the first characterization of an extracellular Cu,ZnSOD in a mycorrhizal fungus. In nature, the presence of OmSod1 in the extracellular environment may also extend the protective role of this enzyme to the plant symbiont. This may be of particular interest from the perspective of using mycorrhizal fungi in bioremediation programmes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.