This work studies how a nonlinear kinematic model aimed for cyclic plasticity could be put into effect and used within a FEM code. A correct modeling of cyclic elasto-plastic behavior can be exploited in low-cycle fatigue life investigation as well as in manufacturing problems related to springback prediction. The chosen formulation has been proposed by Chaboche, and it is implemented in most of the commercial codes used for nonlinear FEM simulations. At first, a procedure for the proper identification of unknown material model parameters has been put forward. This calibration, based on the data collected from experimental low-cycle fatigue tests, has been performed by means of an inverse method. Laboratory tests differ according to the type of material under investigation. A classification can be operated distinguishing between specimens obtained from bulk materials or from sheet metals. For the former, standard tension-compression tests have been performed, while for the latter, a dedicated testing equipment for three-point bend cyclic tests has been devised. Then, further experimental tests have been run to check model transferability: different strain per cycle amplitudes, asymmetric strain cycling and different stress triaxiality levels have been investigated. For each of these tests, experimental vs. FEM results have been analyzed to show the level of agreement that has been reached
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.