The quality control of essential oils (EO) principally aims at revealing the presence of adulterations and at quantifying compounds that are limited by law by evaluating EO chemical compositions, usually in terms of the normalised relative abundance of selected markers, for comparison to reference values reported in pharmacopoeias and/or international norms. Common adulterations of EO consist of the addition of cheaper EO or synthetic materials. This adulteration can be detected by calculating the percent normalised areas of selected markers or the enantiomeric composition of chiral components. The dilution of the EO with vegetable oils is another type of adulteration. This adulteration is quite devious, as it modifies neither the qualitative composition of the resulting EO nor the marker’s normalised percentage abundance, which is no longer diagnostic, and an absolute quantitative analysis is required. This study aims at verifying the application of the two above approaches (i.e., normalised relative abundance and absolute quantitation) to detect EO adulterations, with examples involving selected commercial EO (lavender, bergamot and tea tree) adulterated with synthetic components, EO of different origin and lower economical values and heavy vegetable oils. The results show that absolute quantitation is necessary to highlight adulteration with heavy vegetable oils, providing that a reference quantitative profile is available.
Excessive melanin production causes serious dermatological conditions as well as minor aesthetic problems (i.e., freckles and solar lentigo). The downregulation of tyrosinase is a widespread approach for the treatment of such disorders, and plant extracts have often proven to be valuable sources of tyrosinase inhibitors. Citral (a mixture of neral and geranial) is an important fragrance ingredient that has shown anti-tyrosinase potential. It is highly concentrated in the essential oils (EOs) of Cymbopogon schoenanthus (L.) Spreng., Litsea cubeba (Lour.) Pers., Melissa officinalis L., and Verbena officinalis L. However, only L. cubeba EO has been investigated for use as a potential skin-whitening agent. This work evaluates the in vitro tyrosinase inhibitory activity of these EOs and studies, using bio-assay oriented fractionation, whether their differing chemical compositions influence the overall EO inhibitory activities via possible synergistic, additive, and/or competitive interactions between EOs components. The inhibitory activity of C. schoenanthus EO and that of M. officinalis EOs, with negligible (+)-citronellal amounts, were in-line with their citral content. On the other hand, L. cubeba and V. officinalis EOs inhibited tyrosinase to considerably greater extents as they contained β-myrcene, which contributed to the overall EO activities. Similar observations were made for M. officinalis EO, which bears high (+)-citronellal content which increased citral activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.