Wound signaling pathways in plants are mediated by mitogen-activated protein kinases (MAPKs) and stress hormones, such as ethylene and jasmonates. In Arabidopsis thaliana, the transmission of wound signals by MAPKs has been the subject of detailed investigations; however, the involvement of specific phosphatases in wound signaling is not known. Here, we show that AP2C1, an Arabidopsis Ser/Thr phosphatase of type 2C, is a novel stress signal regulator that inactivates the stress-responsive MAPKs MPK4 and MPK6. Mutant ap2c1 plants produce significantly higher amounts of jasmonate upon wounding and are more resistant to phytophagous mites (Tetranychus urticae). Plants with increased AP2C1 levels display lower wound activation of MAPKs, reduced ethylene production, and compromised innate immunity against the necrotrophic pathogen Botrytis cinerea. Our results demonstrate a key role for the AP2C1 phosphatase in regulating stress hormone levels, defense responses, and MAPK activities in Arabidopsis and provide evidence that the activity of AP2C1 might control the plant's response to B. cinerea.
SummaryStrigolactones (SL) contribute to drought acclimatization in shoots, because SL-depleted plants are hypersensitive to drought due to stomatal hyposensitivity to abscisic acid (ABA). However, under drought, SL biosynthesis is repressed in roots, suggesting organ specificity in their metabolism and role. Because SL can be transported acropetally, such a drop may also affect shoots, as a systemic indication of stress.We investigated this hypothesis by analysing molecularly and physiologically wild-type (WT) tomato (Solanum lycopersicum) scions grafted onto SL-depleted rootstocks, compared with self-grafted WT and SL-depleted genotypes, during a drought time-course.Shoots receiving few SL from the roots behaved as if under mild stress even if irrigated. Their stomata were hypersensitive to ABA (likely via a localized enhancement of SL synthesis in shoots). Exogenous SL also enhanced stomata sensitivity to ABA.As the partial shift of SL synthesis from roots to shoots mimics what happens under drought, a reduction of root-produced SL might represent a systemic signal unlinked from shootward ABA translocation, and sufficient to prime the plant for better stress avoidance.
In eukaryotes, mitogen-activated protein kinases (MAPKs) play key roles in the transmission of external signals, such as mitogens, hormones, and different stresses. MAPKs are activated by MAPK kinases through phosphorylation of MAPKs at both the threonine and tyrosine residues of the conserved TXY activation motif. In plants, several MAPKs are involved in signaling of hormones, stresses, cell cycle, and developmental cues. Recently, we showed that salt stress-induced MAPK (SIMK) is activated when alfalfa cells are exposed to hyperosmotic conditions. Here, we report the isolation and characterization of the alfalfa MAPK kinase SIMKK (SIMK kinase). SIMKK encodes an active protein kinase that interacts specifically with SIMK, but not with three other MAPKs, in the yeast two-hybrid system. Recombinant SIMKK specifically activates SIMK by phosphorylating both the threonine and tyrosine residues in the activation loop of SIMK. SIMKK contains a putative MAPK docking site at the N terminus that is conserved in mammalian MAPK kinases, transcription factors, and phosphatases. Removal of the MAPK docking site of SIMKK partially compromises but does not completely abolish interaction with SIMK, suggesting that other domains of SIMKK also are involved in MAPK binding. In transient expression assays, SIMKK specifically activates SIMK but not two other MAPKs. Moreover, SIMKK enhances the salt-induced activation of SIMK. These data suggest that the salt-induced activation of SIMK is mediated by the dual-specificity protein kinase SIMKK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.