Salt inhibitors have been receiving increasing attention as potential innovative systems to counteract salt damage by preventing crystallisation of the salts within the natural stone structure—and related disruptive action—of built heritage. Especially, we focus on biomass-derived inhibitor systems featuring complete solubility in water or alcohol and intrinsic non-toxicity. Moving from the promising results obtained, the present study aims to develop research concerning the possibility of rationalizing the collected data sets and making them amenable to statistical analysis. This paper reports on an exploratory application of one of the most powerful methods in chemometrics, i.e., principal component analysis (PCA), in this area. It will be seen that this method is a promising tool to extract information from a series of tests to optimize them and to reduce the level of “noise” present in the data collected, i.e., unnecessary information or experimental errors, and to suggest new directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.