The level of linoleic acid in the Sauvignon blanc (SB) grape juice affects the development of different aroma compounds during fermentation by Saccharomyces cerevisiae EC1118, including key varietal thiols such as 3-mercaptohexanol (3MH) and 3-mercaptohexyl acetate (3MHA). However, it is still unknown if linoleic acid would affect in a similar way other commonly used S. cerevisiae wine strains. Here we investigated the effect of grape juice linoleic acid on the development of aroma compounds and other metabolites of SB wines using different wine yeast strains: EC1118, AWRI796 and VIN13. Linoleic acid clearly affected the levels of acetylated aroma compounds, several amino acids, and antioxidant molecules, independent of yeast strain, but the production of 3MH was affected by linoleic acid in a strain-specific manner. Moreover, the supplementation of deuterium-labelled 3MH also affected the production of varietal thiols in a strain-specific way. Linoleic acid reduced the acetylation process probably by inhibiting an acetyltransferase, an effect that was independent of the yeast strain. However, regulation of the 3MH biosynthesis is strain-specific, which suggests a mindful consideration not only towards the wine yeast but also to the linoleic acid concentration in the grape juice in order to obtain the desired wine aroma characteristics.
A yellow pigmented and agar-pitting colony was isolated from a water sample obtained from a drainage ditch within a disused system of constructed wetlands. The strain was purified and named MCT13. This rod-shaped, Gram-negative, oxidase- and catalase-positive, aerobic, non-spore-forming, and non-motile strain formed round colonies and grew optimally at pH 7.5±0.2, at 28-30 °C on LB agar, with 0-0.5 % NaCl. The 16S rRNA gene sequence analysis placed the MCT13 isolate within the Sphingomonas (sensu stricto) cluster. The DNA G+C content was 65.3 %. The only observed ubiquinone was Q10. The major fatty acids included C17 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c. The major polar lipids were sphingoglycolipid, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The major polyamine was spermidine. The 16S rRNA gene phylogenetic analysis performed on the whole sequence, showed the closest relative of MCT13 to be Sphingomonas koreensis (98.52 %); however, there are several genotypic and phenotypic differences between the novel isolate and the type strain JSS26 of S. koreensis. On the basis of these results, strain MCT13 represents a novel species in the genus Sphingomonas, for which the name Sphingomonas turrisvirgatae sp. nov. is proposed. The type strain is MCT13 (=DSM 105457=BAC RE RSCIC 7).
Decontamination of surfaces and items plays an important role in reducing the spread of infectious microorganisms in many settings including hospitals and research institutes. Regardless of the location, appropriate decontamination procedures are required for maintaining biosafety and biosecurity. For example, effective decontamination of microbial cultures is essential to ensure proper biocontainment and safety within microbiological laboratories. To this end, many commercial decontamination agents are available which have been tested to a prescribed standard to substantiate their efficacy. However, these standardised tests are unlikely to accurately reflect all conditions encountered in medical and biomedical research. Despite this, laboratory workers and other users of decontamination agents may assume that all decontamination agents will work in all situations. We tested commonly used commercial decontamination agents against a range of bacterial species to determine their efficacy under real-world laboratory conditions. As each decontamination agent has a different recommended dilution for use, to compare their efficacy we calculated their effective ratio which reflects the difference between the manufacturer-recommended dilution and the dilution needed to achieve decontamination under real-world laboratory conditions. Effective ratios above 1 indicate that the agent was active at a dilution more dilute than recommended whereas effective ratios lower than 1 indicate that the agent required a higher concentration than recommended. Our results show that the quaternary ammonium agents TriGene Advance and Chemgene HLD4L were the most active out of the agents tested, with biocidal activity measured at up to 64 times the recommended dilution. In contrast, hypochlorite (bleach) and Prevail™ (stabilised hydrogen peroxide) had the lowest effective ratios amongst the tested agents. In conclusion, our data suggest that not all decontamination agents will work at the recommended dilutions under real-world laboratory conditions. We recommend that the protocols for the use of decontamination agents are verified under the specific conditions required to ensure they are fit for purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.