This assignment applies to all translations of the Work as well as to preliminary display/posting of the abstract of the accepted article in electronic form before publication. If any changes in authorship (order, deletions, or additions) occur after the manuscript is submitted, agreement by all authors for such changes must be on file with the Publisher. An author's name may be removed only at his/her written request. (Note: Material prepared by employees of the US government in the course of their official duties cannot be copyrighted.
BackgroundMagnesium alloys are of particular interest in medical science since they provide compatible mechanical properties with those of the cortical bone and, depending on the alloying elements, they have the capability to tailor the degradation rate in physiological conditions, providing alternative bioresorbable materials for bone applications. The present study investigates the in vitro short-term response of human undifferentiated cells on three magnesium alloys and high-purity magnesium (Mg).Materials and MethodsThe degradation parameters of magnesium-silver (Mg2Ag), magnesium-gadolinium (Mg10Gd) and magnesium-rare-earth (Mg4Y3RE) alloys were analysed after 1, 2, and 3 days of incubation in cell culture medium under cell culture condition. Changes in cell viability and cell adhesion were evaluated by culturing human umbilical cord perivascular cells on corroded Mg materials to examine how the degradation influences the cellular development.Results and ConclusionsThe pH and osmolality of the medium increased with increasing degradation rate and it was found to be most pronounced for Mg4Y3RE alloy. The biological observations showed that HUCPV exhibited a more homogeneous cell growth on Mg alloys compared to high-purity Mg, where they showed a clustered morphology. Moreover, cells exhibited a slightly higher density on Mg2Ag and Mg10Gd in comparison to Mg4Y3RE, due to the lower alkalinisation and osmolality of the incubation medium. However, cells grown on Mg10Gd and Mg4Y3RE generated more developed and healthy cellular structures that allowed them to better adhere to the surface. This can be attributable to a more stable and homogeneous degradation of the outer surface with respect to the incubation time.
This work aimed to evaluate the in vitro response of Transfected Human Foetal Osteoblast (hFOB) cultured on a magnesium-loaded mesoporous TiO2 coating. The application of mesoporous films on titanium implant surfaces has shown very promising potential to enhance osseointegration. This type of coating has the ability to act as a framework to sustain bioactive agents and different drugs. Magnesium is the element that, after calcium, is the most frequently used to dope titanium implant surfaces, since it is crucial for protein formation, growth factor expression, and aids for bone mineral deposition on implant surfaces. Mesoporous TiO2 films with an average pore-size of 6 nm were produced by the evaporation-induced self-assembly method (EISA) and deposited onto titanium discs. Magnesium loading was performed by soaking the mesoporous TiO2 discs in a magnesium chloride solution. Surface characterization was conducted by SEM, XPS, optical interferometry, and AFM. Magnesium release profile was assessed at different time points using a Magnesium Detection kit. Cell morphology and spreading were observed with SEM. The cytoskeletal organization was stained with TRITC-conjugated Phalloidin and cell viability was evaluated through a mitochondrial colorimetric (MTT) assay. Furthermore, gene expression of bone markers and cell mineralization were analyzed by real time RT-PCR and alizarin-red staining, respectively. The surface chemical analysis by XPS revealed the successful adsorption of magnesium to the mesoporous coating. The AFM measurements revealed the presence of a nanostructured surface roughness. Osteoblasts viability and adhesion as well as the gene expression were unaffected by the addition of magnesium possibly due to its rapid burst release, however, were enhanced by the 3D nanostructure of the TiO2 layer.
This study evaluated the photocatalytic bactericidal effect of nanostructured anatase-rich titanium dioxide (TiO ) on microbial biofilms. Commercially pure titanium discs were spin-coated with photocatalytic TiO nanoparticles (P25). Uncoated discs were used as control (CTRL). Half of the CTRL and half of the P25-coated surfaces were coated with purified saliva (SAL) to give four different groups (CTRL, CTRL + SAL, P25 and P25 + SAL). Streptococcus oralis were allowed to form biofilms on the discs for 18 h and non-adherent cells were rinsed off. Bacterial viability was assessed at time 0 with Live/Dead BacLight staining and epifluorescence microscopy. The remaining discs were divided into a non-UV group and UVA-irradiated (+UV) group (irradiation time, 6 or 24 h). Thereafter, viability was assessed as above. Viability at time 0 was high and no dead cells were seen on any of the surfaces, even after 24 h, in the absence of UVA. However, after 24 h of exposure, the proportion of viable cells was reduced by 40% on the P25 discs compared to 0 and 6 h, and this effect was enhanced with a salivary pellicle. Members of mixed species biofilms differ in their susceptibility to the bactericidal effect of the surfaces tested and further investigations are needed to optimize the conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2321-2328, 2017.
Implants inserted into undersized sites has an increased biomechanical performance, but provoked major remodeling of the cortical bone during the early healing period compared to non-undersized preparations. After 10 weeks, no difference was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.